论文标题
混合泊松随机总和的大量法律收敛率的界限
Bounds for convergence rate in laws of large numbers for mixed Poisson random sums
论文作者
论文摘要
在本文中,构建了大量混合泊松随机总和的融合速率的上限。作为限制和限制前定律之间距离的量度,使用Zolotarev $ζ$ - metric。获得的结果将已知的收敛速率估计扩展到了几何随机总和(在著名的r {é} Nyi定理中)到具有混合泊松分布的一类较宽类别的随机指数,包括,e。 g。,具有(广义)负二项式分布的人。
In the paper, upper bounds for the rate of convergence in laws of large numbers for mixed Poisson random sums are constructed. As a measure of the distance between the limit and pre-limit laws, the Zolotarev $ζ$-metric is used. The obtained results extend the known convergence rate estimates for geometric random sums (in the famous R{é}nyi theorem) to a considerably wider class of random indices with mixed Poisson distributions including, e. g., those with the (generalized) negative binomial distribution.