论文标题
在随机统一电路中的真正多部分纠缠的生长
Growth of genuine multipartite entanglement in random unitary circuits
论文作者
论文摘要
我们研究了随机量子电路模型中真正的多部分纠缠的生长,其中包括随机统一电路模型和随机Clifford电路。我们发现,对于随机的Clifford电路,与随机统一情况相比,多部分纠缠的生长仍然较慢。但是,在两种情况下,多部分纠缠的最终饱和值几乎相同。然后将该行为与具有适中键化的随机矩阵乘积状态获得的真实多部分纠缠进行比较。然后,我们将多部分纠缠的行为与系统的其他全局特性(即。希尔伯特空间中多体波函数的离域化。随之而来的是,我们分析了通过弱测量结果通过随机统一动力学获得的这种高度纠缠量子状态的鲁棒性。
We study the growth of genuine multipartite entanglement in random quantum circuit models, which include random unitary circuit models and the random Clifford circuit. We find that for the random Clifford circuit, the growth of multipartite entanglement remains slower in comparison to the random unitary case. However, the final saturation value of multipartite entanglement is almost the same in both cases. The behavior is then compared to the genuine multipartite entanglement obtained in random matrix product states with a moderately high bond dimension. We then relate the behavior of multipartite entanglement to other global properties of the system, viz. the delocalization of the many-body wavefunctions in Hilbert space. Along with this, we analyze the robustness of such highly entangled quantum states obtained through random unitary dynamics under weak measurements.