论文标题

MKDV类型方程的耦合系统的尖锐适应性

Sharp well-posedness for a coupled system of mKdV type equations

论文作者

Carvajal, Xavier, Esquivel, Liliana, Santos, Raphael

论文摘要

我们考虑与修改后的Korteweg-de Vries类型方程$$相关的初始值问题 \ partial_tv + \ partial_x^3v + \ partial_x(vw^​​2)= 0,\ \ v(x,0)= ϕ(x),, $$ $$ \partial_tw + α\partial_x^3w + \partial_x(v^2w) =0,\ \ w(x,0)=ψ(x),$$ and prove the local well-posedness results for given data in low regularity Sobolev spaces $H^{s}(\textrm{I}\!\textrm{R})\times h^{k}(\ textrm {i} \!\!\ textrm {r})$,$ s,k> - \ frac12 $和$ | s -k | \ leq 1/2 $,对于$α\ neq 0,1 $。另外,我们证明:(i)在$ s <-1/2 $或$ k <-1/2 $或$ | s-k |> 2 $时,将初始数据带到解决方案的解决方案映射在原点上不可能为$ c^3 $; (ii)当(a)$ s-2k> 1 $或$ k <-1/2 $(b)$ k-2s> 1 $或$ s <-1/2 $(a)$ s-2k> 1 $或$ k <-1/2 $(a)$ s-2k> 1 $或$ k <-1/2 $; (c)$ s = k = -1/2 $; (iii)在某种意义上,我们无法减少三联估计的证据,证明了一些相关的双线性估计值(如Tao [19]),因此局部供应良好的结果是敏锐的。

We consider the initial value problem associated to a system consisting modified Korteweg-de Vries type equations $$ \partial_tv + \partial_x^3v + \partial_x(vw^2) =0,\ \ v(x,0)=ϕ(x), $$ $$ \partial_tw + α\partial_x^3w + \partial_x(v^2w) =0,\ \ w(x,0)=ψ(x),$$ and prove the local well-posedness results for given data in low regularity Sobolev spaces $H^{s}(\textrm{I}\!\textrm{R})\times H^{k}(\textrm{I}\!\textrm{R})$, $s,k> -\frac12$ and $|s-k|\leq 1/2$, for $α\neq 0,1$. Also, we prove that: (I) the solution mapping that takes initial data to the solution fails to be $C^3$ at the origin, when $s<-1/2$ or $k<-1/2$ or $|s-k|>2$; (II) the trilinear estimates used in the proof of the local well-posedness theorem fail to hold when (a) $s-2k>1$ or $k<-1/2$ (b) $k-2s>1$ or $s<-1/2$; (c) $s=k=-1/2 $; (III) the local well-posedness result is sharp in a sense that we can not reduce the proof of the trilinear estimates, proving some related bilinear estimates (as in Tao [19]).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源