论文标题

三角形富含复杂网络的低等级表示不可能的不可能

The impossibility of low rank representations for triangle-rich complex networks

论文作者

Seshadhri, C., Sharma, Aneesh, Stolman, Andrew, Goel, Ashish

论文摘要

复杂网络的研究是现代科学中的重大发展,并且丰富了社会科学,生物学,物理学和计算机科学。此类网络的模型和算法在我们的社会中普遍存在,并通过社交网络,搜索引擎和推荐系统来影响人类的行为。一种用于建模这种复杂网络的广泛使用的算法技术是构建网络顶点的低维欧几里得嵌入,在该网络的顶点中,顶点的接近度被解释为边缘的可能性。与共同的观点相反,我们认为这种图形嵌入不会}捕获复杂网络的显着特性。我们关注的两个属性是低度和大型聚类系数,这些系数已被广泛确定为现实世界网络的经验性。我们从数学上证明,可以成功创建这两个属性的任何嵌入(使用点产品来衡量相似性)必须在顶点数量中几乎是线性的。除其他含义外,这还确定了流行的嵌入技术,例如奇异值分解和Node2Vec,无法捕获现实世界中复杂网络的重要结构方面。此外,我们根据DOT产品从经验上研究了许多不同的嵌入技术,并表明它们都无法捕获三角形结构。

The study of complex networks is a significant development in modern science, and has enriched the social sciences, biology, physics, and computer science. Models and algorithms for such networks are pervasive in our society, and impact human behavior via social networks, search engines, and recommender systems to name a few. A widely used algorithmic technique for modeling such complex networks is to construct a low-dimensional Euclidean embedding of the vertices of the network, where proximity of vertices is interpreted as the likelihood of an edge. Contrary to the common view, we argue that such graph embeddings do not}capture salient properties of complex networks. The two properties we focus on are low degree and large clustering coefficients, which have been widely established to be empirically true for real-world networks. We mathematically prove that any embedding (that uses dot products to measure similarity) that can successfully create these two properties must have rank nearly linear in the number of vertices. Among other implications, this establishes that popular embedding techniques such as Singular Value Decomposition and node2vec fail to capture significant structural aspects of real-world complex networks. Furthermore, we empirically study a number of different embedding techniques based on dot product, and show that they all fail to capture the triangle structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源