论文标题
在具有隐藏变量的图形模型中的因果效应的半参数推断
Semiparametric Inference For Causal Effects In Graphical Models With Hidden Variables
论文作者
论文摘要
很好地研究了与隐藏可变的无环图(DAG)相关的因果模型中因果效应的识别理论。但是,由于估计输出的识别功能的复杂性,相应的算法不足。在这项工作中,我们弥合了涉及单一治疗和单一结果的人口水平因果效应的识别和估计之间的差距。我们得出了基于影响函数的估计器,这些估计值在大量的隐藏变量DAG中表现出双重鲁棒性,其中该处理满足了简单的图形标准;该类包括在特殊情况下产生调整和前门功能的模型。我们还提供了必要和充分的条件,在这些条件下,隐藏变量DAG的统计模型非参数饱和,这意味着对观察到的数据分布没有相等的约束。此外,我们得出了一类重要的隐藏变量DAG,这意味着观察到的数据分布在观察上等效(至上限制)到完全观察到的DAG。在这些类似的dag中,我们得出估计器,这些估计值可以在满足我们的图形标准的情况下为感兴趣的目标达到半参数效率的界限。最后,我们提供了一种声音和完整的识别算法,该算法直接为隐藏可变因果模型中的任何可识别效应提供基于权重的估计策略。
Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs (DAGs) is well studied. However, the corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output. In this work, we bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome. We derive influence function based estimators that exhibit double robustness for the identified effects in a large class of hidden variable DAGs where the treatment satisfies a simple graphical criterion; this class includes models yielding the adjustment and front-door functionals as special cases. We also provide necessary and sufficient conditions under which the statistical model of a hidden variable DAG is nonparametrically saturated and implies no equality constraints on the observed data distribution. Further, we derive an important class of hidden variable DAGs that imply observed data distributions observationally equivalent (up to equality constraints) to fully observed DAGs. In these classes of DAGs, we derive estimators that achieve the semiparametric efficiency bounds for the target of interest where the treatment satisfies our graphical criterion. Finally, we provide a sound and complete identification algorithm that directly yields a weight based estimation strategy for any identifiable effect in hidden variable causal models.