论文标题

连续排列模式的可行区域是循环多型

The feasible region for consecutive patterns of permutations is a cycle polytope

论文作者

Borga, Jacopo, Penaguiao, Raul

论文摘要

我们研究了给定尺寸的连续置换次数的比例。具体而言,此类比例在较大排列中的可行极限形成了一个称为可行区域的区域。我们表明,这个可行区域是一个多型,更确切地说是称为重叠图的特定图的循环多物种。这使我们能够计算多面体的尺寸,顶点和面。 最后,我们证明经典事件的局限性和连续事件是独立的,从某种意义上说,在扩展摘要中确定了精确。结果,一系列排列序列的缩放极限不会引起对局部限制的约束,反之亦然。

We study proportions of consecutive occurrences of permutations of a given size. Specifically, the feasible limits of such proportions on large permutations form a region, called feasible region. We show that this feasible region is a polytope, more precisely the cycle polytope of a specific graph called overlap graph. This allows us to compute the dimension, vertices and faces of the polytope. Finally, we prove that the limits of classical occurrences and consecutive occurrences are independent, in some sense made precise in the extended abstract. As a consequence, the scaling limit of a sequence of permutations induces no constraints on the local limit and vice versa.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源