论文标题
共vid-19的现象学方法在人群中传播
A phenomenological approach to COVID-19 spread in a population
论文作者
论文摘要
开发了一种描述电晕病毒(COVID-19)大流行在给定人群中的现象学模型。它可以通过使用Landau-Stuart方程的可观察参数来识别制定足够的政策以控制和缓解所需的关键量。它旨在补充弗格森(Ferguson)和合作者最近发布的详细模拟和方法(2020年)。结果表明,该疾病的初始生长/扩散率γ-C以及人群P-I中受感染者的比例可用于定义“延迟/抑制系数” K-Star,这是对采用控制策略的有效性的量度。 使用简单的Python代码在分析和数值上获得结果。该解决方案既提供定性和定量信息。他们证实并证明了WHO并在许多国家采用的两项基本控制政策合理:a)对COVID-19和B)进行系统的和早期的强化测试个人,例如-19和b)隔离政策,例如“社交/身体疏远”以及严格隔离的“社交/物理疏远”以及人口密度降低,对于使K-Star较大的1,对于抑制流行性的必要。该模型表明,由于较早的策略,当感染率开始降低时,放松这种措施就可以简单地重新启动未感染人群的感染率。目前可以轻松地使用WHO和其他报告中可用的可用统计数据来确定模型的关键参数。指出了对基本模型的可能扩展,以使其更现实。
A phenomenological model to describe the Corona Virus(covid-19) Pandemic spread in a given population is developed. It enables the identification of the key quantities required to form adequate policies for control and mitigation in terms of observable parameters using the Landau-Stuart equation. It is intended to be complementary to detailed simulations and methods published recently by Ferguson and collaborators, March 16, (2020). The results suggest that the initial growth/spreading rate gamma-c of the disease, and the fraction of infected persons in the population p-i can be used to define a `retardation/inhibition coefficient' k-star , which is a measure of the effectiveness of the control policies adopted. The results are obtained analytically and numerically using a simple Python code. The solutions provide both qualitative and quantitative information. They substantiate and justify two basic control policies enunciated by WHO and adopted in many countries: a) Systematic and early intensive testing individuals for covid-19 and b) Sequestration policies such as `social/physical distancing' and population density reduction by strict quarantining are essential for making k-star greater than 1, necessary for suppressing the pandemic. The model indicates that relaxing such measures when the infection rate starts to decrease as a result of earlier policies could simply restart the infection rate in the non-infected population. Presently available available statistical data in WHO and other reports can be readily used to determine the the key parameters of the model. Possible extensions to the basic model to make it more realistic are indicated.