论文标题

GPS网络:场景图生成的图形属性感应网络

GPS-Net: Graph Property Sensing Network for Scene Graph Generation

论文作者

Lin, Xin, Ding, Changxing, Zeng, Jinquan, Tao, Dacheng

论文摘要

场景图生成(SGG)旨在检测图像中的对象及其成对关系。在最近的作品中,场景图的三个关键属性都没有被逐渐解散:即边缘方向信息,节点之间的优先级差异以及关系的长尾分布。因此,在本文中,我们提出了一个Graph属性感应网络(GPS-NET),该网络充分探讨了SGG的这三个属性。首先,我们提出了一个新颖的消息传递模块,该模块通过特定于节点的上下文信息来增强节点特征,并通过三线性模型编码边缘方向信息。其次,我们引入了一个节点优先级敏感损失,以反映训练过程中节点之间优先级的差异。这是通过设计映射函数来调整焦点损失中的焦点参数来实现的。第三,由于关系的频率受长尾分配问题的影响,因此我们首先软化分布,然后根据其视觉外观对每个主题对对象进行调整来减轻此问题。系统的实验证明了所提出的技术的有效性。此外,GPS-NET在三个流行的数据库上实现了最新的性能:VG,OI和VRD在各种设置和指标下取得了重大收益。代码和模型可在\ url {https://github.com/taksau/gps-net}上获得。

Scene graph generation (SGG) aims to detect objects in an image along with their pairwise relationships. There are three key properties of scene graph that have been underexplored in recent works: namely, the edge direction information, the difference in priority between nodes, and the long-tailed distribution of relationships. Accordingly, in this paper, we propose a Graph Property Sensing Network (GPS-Net) that fully explores these three properties for SGG. First, we propose a novel message passing module that augments the node feature with node-specific contextual information and encodes the edge direction information via a tri-linear model. Second, we introduce a node priority sensitive loss to reflect the difference in priority between nodes during training. This is achieved by designing a mapping function that adjusts the focusing parameter in the focal loss. Third, since the frequency of relationships is affected by the long-tailed distribution problem, we mitigate this issue by first softening the distribution and then enabling it to be adjusted for each subject-object pair according to their visual appearance. Systematic experiments demonstrate the effectiveness of the proposed techniques. Moreover, GPS-Net achieves state-of-the-art performance on three popular databases: VG, OI, and VRD by significant gains under various settings and metrics. The code and models are available at \url{https://github.com/taksau/GPS-Net}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源