论文标题

通用对象抗旋转的噪声建模,合成和分类

Noise Modeling, Synthesis and Classification for Generic Object Anti-Spoofing

论文作者

Stehouwer, Joel, Jourabloo, Amin, Liu, Yaojie, Liu, Xiaoming

论文摘要

使用印刷照片并重播生物识别方式的视频,例如虹膜,指纹和脸部,是欺骗识别系统以授予访问权限为真正用户的常见攻击。随着在线人工购物不断增长(例如eBay和Craigslist),此类攻击也威胁到这些服务,在线照片插图可能不会从真实的物品中捕获,而是从纸张或数字屏幕上捕获。因此,对抗旋转的研究应从特定于模式的解决方案扩展到基于通用的溶液。在这项工作中,我们首次定义并解决了通用物体抗旋转(GOA)的问题。检测这些攻击的一个重要提示是捕获传感器和欺骗介质引入的噪声模式。不同的传感器/介质组合会导致各种噪声模式。我们提出了一个基于GAN的架构,以合成和确定可见和看不见的介质/传感器组合的噪声模式。我们表明,合成和鉴定程序是互惠互利的。我们进一步证明了博学的GOA模型可以直接有助于特定于模式的反欺骗,而无需域转移。代码和GOSET数据集可在cvlab.cse.msu.edu/project-goas.html上找到。

Using printed photograph and replaying videos of biometric modalities, such as iris, fingerprint and face, are common attacks to fool the recognition systems for granting access as the genuine user. With the growing online person-to-person shopping (e.g., Ebay and Craigslist), such attacks also threaten those services, where the online photo illustration might not be captured from real items but from paper or digital screen. Thus, the study of anti-spoofing should be extended from modality-specific solutions to generic-object-based ones. In this work, we define and tackle the problem of Generic Object Anti-Spoofing (GOAS) for the first time. One significant cue to detect these attacks is the noise patterns introduced by the capture sensors and spoof mediums. Different sensor/medium combinations can result in diverse noise patterns. We propose a GAN-based architecture to synthesize and identify the noise patterns from seen and unseen medium/sensor combinations. We show that the procedure of synthesis and identification are mutually beneficial. We further demonstrate the learned GOAS models can directly contribute to modality-specific anti-spoofing without domain transfer. The code and GOSet dataset are available at cvlab.cse.msu.edu/project-goas.html.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源