论文标题

谎言组三角形的简单数量的估计

Estimate of number of simplices of triangulations of Lie groups

论文作者

Duan, Haibao, Marzantowicz, Wacław, Zhao, Xuezhi

论文摘要

我们介绍了经典紧凑型谎言基团给定维度的简单数量的估计值。与以前的工作一样,该方法是通过共同体论证\ cite {gmp}的共同体论证和结合拓扑结构的下限定理的最新版本的同类论点的使用估算的结合以及使用覆盖类型的估值。对于特殊的谎言组,我们使用第一和第三作者给出的同胞环的描述进行了完整的计算。对于不断增加的谎言组,尺寸不断增长$ d $,给出了最高维度的简单数量的增长率,这些简单范围扩展到了(固定)codimension $ d-i $的简单案例。

We present estimates of number of simplices of given dimension of classical compact Lie groups. As in the previous work \cite{GMP2} the approach is a combination of an estimate of number of vertices with a use of valuation of the covering type by cohomological argument of \cite{GMP} and application of the recent versions of the Lower Bound Theorem of combinatorial topology. For the case of exceptional Lie groups we made a complete calculation using the description of their cohomology rings given by the first and third author. For infinite increasing series of Lie groups of growing dimension $d$ the rate of growth of number of simplices of highest dimension is given which extends onto the case of simplices of (fixed) codimension $d-i$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源