论文标题

艾森斯坦田地上一个圆圈的拉格朗日光谱

Lagrange spectrum of a circle over the Eisensteinian field

论文作者

Cha, Byungchul, Chapman, Heather, Gelb, Brittany, Weiss, Chooka

论文摘要

我们研究了复杂平面的单位圆圈$ | z | = 1 $的内在拉格朗日频谱,相对于Eisensteinian Field $ \ Mathbb {Q}(\ sqrt {-3})$。我们证明,Lagrange光谱的最低限度为$ 2 $,其最小的累积点为$ 4/\ sqrt {3} $。此外,我们将光谱中的所有值集在$ 2 $和$ 4/\ sqrt3 $之间。

We study an intrinsic Lagrange spectrum of the unit circle $|z|=1$ in the complex plane with respect to the Eisensteinian field $\mathbb{Q}(\sqrt{-3})$. We prove that the minimum of the Lagrange spectrum is $2$ and that its smallest accumulation point is $4/\sqrt{3}$. In addition, we characterize the set of all values in the spectrum between $2$ and $4/\sqrt3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源