论文标题

对抗性功能幻觉网络,用于几次学习

Adversarial Feature Hallucination Networks for Few-Shot Learning

论文作者

Li, Kai, Zhang, Yulun, Li, Kunpeng, Fu, Yun

论文摘要

最近在各种任务中深入学习的繁荣在很大程度上得到了丰富且易于访问的标签数据的认可。尽管如此,对于许多真实应用来说,大规模的监督仍然是一种奢侈品,增强了人们对标签 - 筛选技术(例如少量学习学习(FSL))的极大兴趣,该技术旨在通过一些标签样本来学习新课程的概念。 FSL的一种自然方法是数据增强,许多最近的工作通过提出各种数据综合模型证明了可行性。但是,这些模型无法很好地确保合成数据的可区分性和多样性,因此通常会产生不良结果。在本文中,我们提出了基于有条件的Wasserstein生成对抗网络(CWGAN)的对抗性特征幻觉网络(AFHN),并幻觉在少数标记的样品上幻觉。将两个新型的正规化器,即分类正常化程序和抗崩溃的正规器,分别纳入AFHN,以鼓励合成特征的可区分性和多样性。消融研究验证了拟议的基于CWGAN的特征幻觉框架和拟议的正规化器的有效性。三个常见基准数据集的比较结果证实了AFHN对现有基于数据的FSL方法的优势和其他最先进的方法。

The recent flourish of deep learning in various tasks is largely accredited to the rich and accessible labeled data. Nonetheless, massive supervision remains a luxury for many real applications, boosting great interest in label-scarce techniques such as few-shot learning (FSL), which aims to learn concept of new classes with a few labeled samples. A natural approach to FSL is data augmentation and many recent works have proved the feasibility by proposing various data synthesis models. However, these models fail to well secure the discriminability and diversity of the synthesized data and thus often produce undesirable results. In this paper, we propose Adversarial Feature Hallucination Networks (AFHN) which is based on conditional Wasserstein Generative Adversarial networks (cWGAN) and hallucinates diverse and discriminative features conditioned on the few labeled samples. Two novel regularizers, i.e., the classification regularizer and the anti-collapse regularizer, are incorporated into AFHN to encourage discriminability and diversity of the synthesized features, respectively. Ablation study verifies the effectiveness of the proposed cWGAN based feature hallucination framework and the proposed regularizers. Comparative results on three common benchmark datasets substantiate the superiority of AFHN to existing data augmentation based FSL approaches and other state-of-the-art ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源