论文标题
有效的注意力指导5G功率放大器数字预期
Efficient attention guided 5G power amplifier digital predistortion
论文作者
论文摘要
我们研究了神经网络(NN)辅助技术,以补偿5G PA通过数字预性(DPD)的非线性行为和记忆效应。传统上,最普遍的补偿技术使用内存多项式模型(MPM)计算补偿元素。已经证明各种神经网络建议可以改善这种表现。但是,到目前为止,他们主要具有过度的培训或用于现实世界实施的推理成本。在本文中,我们提出了一个DPD架构,该体系结构基于由神经关注的实际MPM配方。我们的方法使一组MPM DPD组件能够单独学习针对数据空间的不同区域,并将其输出结合起来,以获得较高的总体补偿。我们的方法产生的性能与具有最小复杂性的高容量NN模型的性能相似。最后,我们将我们的方法视为可以扩展到各种本地补偿器类型的框架。
We investigate neural network (NN) assisted techniques for compensating the non-linear behaviour and the memory effect of a 5G PA through digital predistortion (DPD). Traditionally, the most prevalent compensation technique computes the compensation element using a Memory Polynomial Model (MPM). Various neural network proposals have been shown to improve on this performance. However, thus far they mostly come with prohibitive training or inference costs for real world implementations. In this paper, we propose a DPD architecture that builds upon the practical MPM formulation governed by neural attention. Our approach enables a set of MPM DPD components to individually learn to target different regions of the data space, combining their outputs for a superior overall compensation. Our method produces similar performance to that of higher capacity NN models with minimal complexity. Finally, we view our approach as a framework that can be extended to a wide variety of local compensator types.