论文标题
黑砷作为最佳气体传感器:VDW校正密度功能理论计算
Black Arsenic as an Optimum Gas Sensor: vdW Corrected Density Functional Theory Calculations
论文作者
论文摘要
最近的实验表明,2D黑砷的合成具有纳米级设备应用的出色电子和运输特性。本文中,我们通过第一个原理计算的密度功能理论以及非平衡的绿色平衡功能方法,即五个气体分子CO,CO2,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO 2和NH3的结构,电子,吸附强度,电荷转移和转运性能。我们的发现表明,黑砷的最佳感应性能甚至可以超过其他2D材料(例如石墨烯)。此外,我们注意到黑色砷上所有五个气体分子的最佳吸附位点以及气体分子和黑色砷之间的显着电荷转移均负责最佳吸附强度。特别是,显着的充电器传输表明目标气体分子和纳米级设备之间的相互作用足以产生电子传输特性的明显变化。作为原则的证明,我们检查了建模的纳米尺度设备对CO,CO2,NO,NO,NO2和NH3气体分子的敏感性,表明确实可以可靠地检测所有五个气体分子。因此,基于所有这些发现,例如对所有五个气体分子吸附的灵敏度和选择性,使黑砷成为最佳气体传感器纳米级设备的有前途的材料。
Recent experiments demonstrate the synthesis of 2D black arsenic exhibits excellent electronic and transport properties for nanoscale device applications. Herein, we study by first principle calculations density functional theory together with non equilibrium Greens function methods, the structural, electronic, adsorption strength, charge transfer, and transport properties of five gas molecules CO, CO2, NO, NO2, and NH3 on a monolayer of black arsenic. Our findings suggest optimum sensing performance of black arsenic that can even surpass that of other 2D material such as graphene. Further, we note the optimum adsorption sites for all the five gas molecules on the black arsenic and significant charge transfer between the gas molecules and black arsenic are responsible for optimum adsorption strength. Particularly, the significant charger transfer is a sign that the interaction between the target gas molecule and nanoscale device is sufficient to yield noticeable changes in the electronic transport properties. As a proof of principle, we have examined the sensitivity of a modeled nano-scale device towards CO, CO2, NO, NO2, and NH3 gas molecules, indicating that it is indeed possible to reliably detect all the five gas molecules. Thus, based on all these findings, such as sensitivity and selectivity to all the five gas molecules adsorption make black arsenic a promising material as an optimum gas sensor nano-scale device.