论文标题

关于曲率的最大功能

On Maximal Functions With Curvature

论文作者

Krause, Ben

论文摘要

我们展示了一类“相对弯曲的” $ \vecγ(t):=(γ_1(t),\ dots,γ_n(t))$,以便具有多线性最大功能满足Hölder指数的尖锐范围, \ sup_ {r> 0} \ \ \\ frac {1} {r} \ int_ {0}^r \ prod_ {i = 1}^n | f_i(x-γ_i(t))| \ dt \ right \ | _ {l^p(\ mathbb {r})} \ leq c \ cdot \ prod_ {i = 1}^n \ | | f_j \ | _ {l^{p_j}(\ Mathbb {r})} \] \] \ geq p _ {\vecγ}> 1/n $对于某些曲线。 例如,$ p _ {\vecγ} = 1/n^+$对于分数单元的情况,\ [\vecγ(t)=(t^{α_1},\ dots,\ dots,t^{α_n}),\; \; \; α_1<\ dots <α_n。\]我们方法的两个示例应用如下: 对于任何可测量的$ u_1,\ dots,u_n:\ mathbb {r}^{n} \ to \ mathbb {r} $,$ u_i $独立于$ i $ th坐标向量,以及任何相对弯曲的$ \ \ \vecγ$,\ [\ lim_ [\ [\ lim_ {r \ fr \ fr \ fr \ fr \ fr \ fr。 \ int_0^r f \ big(x_1 -u_1(x)\cdotγ_1(t),\ dots,x_n -u_n(x)\ cdotγ_n(t)\ big)\ big)\ dt = f(x_1,x_1,\ dots,\ dots,x_n),\; \; \; A.E. \]对于l^p(\ mathbb {r}^n)中的每一个$ f \,\ p> 1 $。 每个适当归一化的设置$ a \ subset [0,1]的足够大的Hausdorff尺寸包含进度,\ [\ {x,x -γ_1(t),\ dots,x -γ_n(t)\} \} \ subset a,\ geq c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c的$ \vecγ$。

We exhibit a class of "relatively curved" $\vecγ(t) := (γ_1(t),\dots,γ_n(t))$, so that the pertaining multi-linear maximal function satisfies the sharp range of Hölder exponents, \[ \left\| \sup_{r > 0} \ \frac{1}{r} \int_{0}^r \prod_{i=1}^n |f_i(x-γ_i(t))| \ dt \right\|_{L^p(\mathbb{R})} \leq C \cdot \prod_{i=1}^n \| f_j \|_{L^{p_j}(\mathbb{R})} \] whenever $\frac{1}{p} = \sum_{j=1}^n \frac{1}{p_j}$, where $p_j > 1$ and $p \geq p_{\vecγ}$, where $1 \geq p_{\vecγ} > 1/n$ for certain curves. For instance, $p_{\vecγ} = 1/n^+$ for the case of fractional monomials, \[ \vecγ(t) = (t^{α_1},\dots,t^{α_n}), \; \; \; α_1 < \dots < α_n.\] Two sample applications of our method are as follows: For any measurable $u_1,\dots,u_n : \mathbb{R}^{n} \to \mathbb{R}$, with $u_i$ independent of the $i$th coordinate vector, and any relatively curved $\vecγ$, \[ \lim_{r \to 0} \ \frac{1}{r} \int_0^r F\big(x_1 - u_1(x) \cdot γ_1(t),\dots,x_n - u_n(x) \cdot γ_n(t) \big) \ dt = F(x_1,\dots,x_n), \; \; \; a.e. \] for every $F \in L^p(\mathbb{R}^n), \ p > 1$. Every appropriately normalized set $A \subset [0,1]$ of sufficiently large Hausdorff dimension contains the progression, \[ \{ x, x-γ_1(t),\dots,x - γ_n(t) \} \subset A, \] for some $t \geq c_{\vecγ} > 0$ strictly bounded away from zero, depending on $\vecγ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源