论文标题

根成像的超级分辨率

Super Resolution for Root Imaging

论文作者

Ruiz-Munoz, Jose F., Nimmagadda, Jyothier K., Dowd, Tyler G., Baciak, James E., Zare, Alina

论文摘要

高分辨率摄像机通过为诸如目标与背景歧视之类的任务提供机制,以及对细度地面植物属性的测量和分析,对植物表型非常有帮助。但是,植物根部高分辨率(HR)图像的获取比地面数据收集更具挑战性。因此,需要有效的超分辨率(SR)算法来克服传感器的分辨率限制,减少存储空间需求并提高后来分析的性能,例如自动分割。我们提出了一个SR框架,用于使用卷积神经网络(CNN)来增强植物根的图像。我们比较了训练SR模型的三个替代方法:i)使用非植物根部图像进行训练,ii)使用植物根图像进行训练,iii)使用非植物根部图像和用植物根图像进行微调预处理模型。我们在公共可用数据集的集合中演示,即使在使用非Root数据集培训的情况下,SR模型也优于基本的双子插值。同样,我们的细分实验表明,可以独立于SNR实现此任务的高性能。因此,我们得出的结论是,图像增强的质量取决于应用程序。

High-resolution cameras have become very helpful for plant phenotyping by providing a mechanism for tasks such as target versus background discrimination, and the measurement and analysis of fine-above-ground plant attributes. However, the acquisition of high-resolution (HR) imagery of plant roots is more challenging than above-ground data collection. Thus, an effective super-resolution (SR) algorithm is desired for overcoming resolution limitations of sensors, reducing storage space requirements, and boosting the performance of later analysis, such as automatic segmentation. We propose a SR framework for enhancing images of plant roots by using convolutional neural networks (CNNs). We compare three alternatives for training the SR model: i) training with non-plant-root images, ii) training with plant-root images, and iii) pretraining the model with non-plant-root images and fine-tuning with plant-root images. We demonstrate on a collection of publicly available datasets that the SR models outperform the basic bicubic interpolation even when trained with non-root datasets. Also, our segmentation experiments show that high performance on this task can be achieved independently of the SNR. Therefore, we conclude that the quality of the image enhancement depends on the application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源