论文标题

用受控的量子动态实现的端到端量子机学习

End-to-End Quantum Machine Learning Implemented with Controlled Quantum Dynamics

论文作者

Wu, Re-Bing, Cao, Xi, Xie, Pinchen, Liu, Yu-xi

论文摘要

朝着在不完善的近期中间尺度量子(NISQ)处理器上部署的量子机学习,整个物理实现应包括尽可能少的手工设计的模块,仅确定几个临时参数。这项工作提出了一种适合硬件友好的端到端量子机学习方案,可以通过不完善的近期中间规模量子(NISQ)处理器实施。该建议将机器学习任务转换为受控量子动力学的优化,其中学习模型通过实验可调的控制变量参数化。我们的设计还通过通过代理控制变量将原始输入编码到量子状态来实现自动化功能选择。与基于门的参数化量子电路相比,提出的端到端量子学习模型很容易实现,因为仅确定临时参数很少。基准测试MNIST数据集上的数值模拟表明,该模型只能使用3-5个量子位实现高性能而不会缩小数据集,这显示了完成NISQ处理器上大规模现实世界学习任务的巨大潜力。该方案有望使用中级量子处理器有效执行大规模的现实学习任务。

Toward quantum machine learning deployed on imperfect near-term intermediate-scale quantum (NISQ) processors, the entire physical implementation of should include as less as possible hand-designed modules with only a few ad-hoc parameters to be determined. This work presents such a hardware-friendly end-to-end quantum machine learning scheme that can be implemented with imperfect near-term intermediate-scale quantum (NISQ) processors. The proposal transforms the machine learning task to the optimization of controlled quantum dynamics, in which the learning model is parameterized by experimentally tunable control variables. Our design also enables automated feature selection by encoding the raw input to quantum states through agent control variables. Comparing with the gate-based parameterized quantum circuits, the proposed end-to-end quantum learning model is easy to implement as there are only few ad-hoc parameters to be determined. Numerical simulations on the benchmarking MNIST dataset demonstrate that the model can achieve high performance using only 3-5 qubits without downsizing the dataset, which shows great potential for accomplishing large-scale real-world learning tasks on NISQ processors.arning models. The scheme is promising for efficiently performing large-scale real-world learning tasks using intermediate-scale quantum processors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源