论文标题
同时核心分区的尺寸
Sizes of Simultaneous Core Partitions
论文作者
论文摘要
雅克林·安德森(Jaclyn Anderson)在分区之间有一个良好的对应关系,避免长度为s或t的钩子以及某些长度为s+t的二进制串。使用此地图,我们证明,这种法律的随机分区的总大小将律师事务所的U^2分布收敛为Doron Zeilberger的猜测。
There is a well-studied correspondence by Jaclyn Anderson between partitions that avoid hooks of length s or t and certain binary strings of length s+t. Using this map, we prove that the total size of a random partition of this kind converges in law to Watson's U^2 distribution, as conjectured by Doron Zeilberger.