论文标题
无定形物质的拓扑编织模型
Topological Weaire-Thorpe models of amorphous matter
论文作者
论文摘要
无定形固体仍然不在分类和系统发现新拓扑材料之外,部分原因是缺乏在分析上可进行的现实模型。在这里,我们介绍了拓扑编织模型类别,这些模型定义在具有固定配位数的无定形晶格上,这是共价键合的无定形无定形固体的现实特征。它们的短距离属性使我们能够在分析上预测光谱差距。它们在轨道置换下的对称性使我们能够通过在无定形系统中首次引入对称指标来分析计算拓扑相图,从而确定了量化的可观察结果,例如圆形二色性。这些模型和我们定义不变性的程序可以推广到更高的协调数和尺寸,从而为使用准局部特性在真实空间中对无定形拓扑状态的完整分类开辟了一条途径。
Amorphous solids remain outside of the classification and systematic discovery of new topological materials, partially due to the lack of realistic models that are analytically tractable. Here we introduce the topological Weaire-Thorpe class of models, which are defined on amorphous lattices with fixed coordination number, a realistic feature of covalently bonded amorphous solids. Their short-range properties allow us to analytically predict spectral gaps. Their symmetry under permutation of orbitals allows us to analytically compute topological phase diagrams, which determine quantized observables like circular dichroism, by introducing symmetry indicators for the first time in amorphous systems. These models and our procedures to define invariants are generalizable to higher coordination number and dimensions, opening a route towards a complete classification of amorphous topological states in real space using quasilocal properties.