论文标题
在分数量子厅边缘上与对称相关的传输
Symmetry-related transport on a fractional quantum Hall edge
论文作者
论文摘要
量子大厅状态下的低能运输是通过边缘模式携带的,它是由散装拓扑不变的,可能是边缘的微观玻尔兹曼动力学。在这里,我们展示了边缘汉密尔顿基础运输属性(特别是华盛顿)的对称性的存在或破坏。电导和噪音。我们通过分析量子厅效应的孔偶联状态,特别是$ν= 2/3 $的情况,在量子点接触(QPC)几何形状中进行了证明。我们确定了两个对称性,一个连续的$ su(3)$和一个离散的$ z_3 $,它们的存在或不存在(不同的对称场景)决定了电导和射击噪声的定性不同类型的行为。尽管最近的测量与这些对称方案之一是一致的,但在将来的实验中可以实现其他测量。
Low-energy transport in quantum Hall states is carried through edge modes, and is dictated by bulk topological invariants and possibly microscopic Boltzmann kinetics at the edge. Here we show how the presence or breaking of symmetries of the edge Hamiltonian underlie transport properties, specifically d.c. conductance and noise. We demonstrate this through the analysis of hole-conjugate states of the quantum Hall effect, specifically the $ν=2/3$ case in a quantum point-contact (QPC) geometry. We identify two symmetries, a continuous $SU(3)$ and a discrete $Z_3$, whose presence or absence (different symmetry scenarios) dictate qualitatively different types of behavior of conductance and shot noise. While recent measurements are consistent with one of these symmetry scenarios, others can be realized in future experiments.