论文标题

表面的子图密度

Subgraph densities in a surface

论文作者

Huynh, Tony, Joret, Gwenaël, Wood, David R.

论文摘要

给定一个固定的图形$ h $,该$ h $嵌入了表面$σ$,$ n $ vertex Graph $ g $的$ h $的最大副本是嵌入$σ$的?我们证明答案为$θ(n^{f(h)})$,其中$ f(h)$是一个$ h $的“ flap-number”的图形不变,该图独立于$σ$。这同时回答了Eppstein(1993)提出的两个开放问题。当$ h $是一个完整的图表时,我们给出更精确的答案。

Given a fixed graph $H$ that embeds in a surface $Σ$, what is the maximum number of copies of $H$ in an $n$-vertex graph $G$ that embeds in $Σ$? We show that the answer is $Θ(n^{f(H)})$, where $f(H)$ is a graph invariant called the `flap-number' of $H$, which is independent of $Σ$. This simultaneously answers two open problems posed by Eppstein (1993). When $H$ is a complete graph we give more precise answers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源