论文标题

纵向合并和一致性正规化,以模拟MRI的疾病进展

Longitudinal Pooling & Consistency Regularization to Model Disease Progression from MRIs

论文作者

Ouyang, Jiahong, Zhao, Qingyu, Sullivan, Edith V, Pfefferbaum, Adolf, Tapert, Susan F., Adeli, Ehsan, Pohl, Kilian M

论文摘要

许多神经系统疾病的特征是大脑结构和功能逐渐恶化。大型纵向MRI数据集已通过应用机器和深度学习来预测诊断,从而揭示了这种恶化。一种流行的方法是应用卷积神经网络(CNN)从纵向MRI的每次访问中提取信息性特征,然后使用这些功能通过经常性神经网络(RNN)对每个访问进行分类。这种建模忽略了该疾病的渐进性,这可能会导致整个访问中临床上难以置信的分类。为了避免这个问题,我们建议通过将特征提取与新型的纵向合并层耦合,并结合访问的特征,并根据疾病进展,跨越访问的分类一致性。我们评估了来自三个神经影像数据集的纵向结构MRI的提议方法:阿尔茨海默氏病神经饰面倡议(ADNI,n = 404),这是一个由274个正常对照组和329例酒精使用障碍(AUD)的患者组成的数据集,以及来自全国性的葡萄酒和神经毒品的255名年轻人。在所有三个实验中,我们的方法都优于其他广泛使用的方法来进行纵向分类,从而为更准确的跟踪条件对大脑的影响做出了独特的贡献。该代码可在https://github.com/ouyangjiahong/longitudinal-pooling上找到。

Many neurological diseases are characterized by gradual deterioration of brain structure and function. Large longitudinal MRI datasets have revealed such deterioration, in part, by applying machine and deep learning to predict diagnosis. A popular approach is to apply Convolutional Neural Networks (CNN) to extract informative features from each visit of the longitudinal MRI and then use those features to classify each visit via Recurrent Neural Networks (RNNs). Such modeling neglects the progressive nature of the disease, which may result in clinically implausible classifications across visits. To avoid this issue, we propose to combine features across visits by coupling feature extraction with a novel longitudinal pooling layer and enforce consistency of the classification across visits in line with disease progression. We evaluate the proposed method on the longitudinal structural MRIs from three neuroimaging datasets: Alzheimer's Disease Neuroimaging Initiative (ADNI, N=404), a dataset composed of 274 normal controls and 329 patients with Alcohol Use Disorder (AUD), and 255 youths from the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). In all three experiments our method is superior to other widely used approaches for longitudinal classification thus making a unique contribution towards more accurate tracking of the impact of conditions on the brain. The code is available at https://github.com/ouyangjiahong/longitudinal-pooling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源