论文标题

快速的非平均场网络:时间平均

Fast non mean-field networks: uniform in time averaging

论文作者

Barré, Julien, Dobson, Paul, Ottobre, Michela, Zatorska, Ewelina

论文摘要

我们研究了$ n $颗粒的人群,这些颗粒是根据扩散过程进化的,并通过动态网络相互作用。反过来,网络的演变耦合到粒子的位置。与平均场状态相比,每个粒子都与其他粒子相互作用,即与$ o(n)$粒子相互作用,我们认为稀疏网络的先验案例更加困难。也就是说,每个粒子平均与$ O(1)$粒子相互作用。我们还假设网络的动力学比粒子的动力学快得多,而网络的时间尺度由参数$ε> 0 $描述。我们结合了平均($ε\ rightarrow 0 $)和许多粒子($ n \ rightarrow \ infty $)限制,并证明了粒子的经验密度的演变(在两种限制之后)通过非线性的fokker-planck equation描述;此外,我们提供了可以及时统一采用此类限制的条件,因此提供了一个标准,在该标准下,限制了非线性fokker-Planck方程是对原始系统的良好近似值。我们证明的核心包括准确控制平均估计值的$ n $依赖性。

We study a population of $N$ particles, which evolve according to a diffusion process and interact through a dynamical network. In turn, the evolution of the network is coupled to the particles' positions. In contrast with the mean-field regime, in which each particle interacts with every other particle, i.e. with $O(N)$ particles, we consider the a priori more difficult case of a sparse network; that is, each particle interacts, on average, with $O(1)$ particles. We also assume that the network's dynamics is much faster than the particles' dynamics, with the time-scale of the network described by a parameter $ε>0$. We combine the averaging ($ε\rightarrow 0$) and the many particles ($N \rightarrow \infty$) limits and prove that the evolution of the particles' empirical density is described (after taking both limits) by a non-linear Fokker-Planck equation; we moreover give conditions under which such limits can be taken uniformly in time, hence providing a criterion under which the limiting non-linear Fokker-Planck equation is a good approximation of the original system uniformly in time. The heart of our proof consists of controlling precisely the dependence in $N$ of the averaging estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源