论文标题

在高能量时,贝尔林 - 塞尔伯格极端和模块化自举

Beurling-Selberg Extremization and Modular Bootstrap at High Energies

论文作者

Mukhametzhanov, Baur, Pal, Sridip

论文摘要

我们考虑在缩放尺寸的窗口中的运算符数量上的上限和下限,$ [δ-δ,δ+δ] $在2D单位模块化不变性CFT中均非$δ$。这些界限取决于函数的选择,该功能将间隔$ [δ-δ,δ+δ] $的特征功能进行了主要化和缩小,并具有有限支持的傅立叶变换。在此选择中,边界的优化完全是贝尔林 - 塞尔伯格极端化问题,在分析数理论中广为人知。我们回顾了此问题的解决方案,并在任何$δ\ geq 0 $的运算符数量上介绍了相应的界限。当$2δ\ in \ Mathbb z _ {\ geq 0} $中,边界通过具有整数间距的已知分区函数饱和。类似的结果适用于固定旋转和Virasoro初选的运营商,以$ C> 1 $理论。

We consider previously derived upper and lower bounds on the number of operators in a window of scaling dimensions $[Δ- δ,Δ+ δ]$ at asymptotically large $Δ$ in 2d unitary modular invariant CFTs. These bounds depend on a choice of functions that majorize and minorize the characteristic function of the interval $[Δ- δ,Δ+ δ]$ and have Fourier transforms of finite support. The optimization of the bounds over this choice turns out to be exactly the Beurling-Selberg extremization problem, widely known in analytic number theory. We review solutions of this problem and present the corresponding bounds on the number of operators for any $δ\geq 0$. When $2δ\in \mathbb Z_{\geq 0}$ the bounds are saturated by known partition functions with integer-spaced spectra. Similar results apply to operators of fixed spin and Virasoro primaries in $c>1$ theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源