论文标题
光学非视线基于物理的3D人姿势估计
Optical Non-Line-of-Sight Physics-based 3D Human Pose Estimation
论文作者
论文摘要
我们描述了一种从瞬态图像(即,光光子的3D时空直方图)中估算的3D人体姿势估计方法。我们的方法可以通过使用环境间接反映的光线来感知3D人的姿势。我们从NLOS成像,人姿势估计和深度强化学习中汇集了各种技术,以构建端到端数据处理管道,将原始的光子测量结果转换为完整的3D人体姿势序列估计。我们的贡献是数据表示过程的设计,其中包括(1)可学习的逆点扩展功能(PSF)将原始瞬态图像转换为深度特征向量; (2)以瞬态图像特征为条件的神经类人动物控制策略,并从与物理模拟器的相互作用中学到了学历; (3)基于深度数据的数据综合和增强策略,可以将其传输到现实世界的NLOS成像系统。我们的初步实验表明,我们的方法能够概括为现实世界的NLOS测量,以估计物理播种3D人类姿势。
We describe a method for 3D human pose estimation from transient images (i.e., a 3D spatio-temporal histogram of photons) acquired by an optical non-line-of-sight (NLOS) imaging system. Our method can perceive 3D human pose by `looking around corners' through the use of light indirectly reflected by the environment. We bring together a diverse set of technologies from NLOS imaging, human pose estimation and deep reinforcement learning to construct an end-to-end data processing pipeline that converts a raw stream of photon measurements into a full 3D human pose sequence estimate. Our contributions are the design of data representation process which includes (1) a learnable inverse point spread function (PSF) to convert raw transient images into a deep feature vector; (2) a neural humanoid control policy conditioned on the transient image feature and learned from interactions with a physics simulator; and (3) a data synthesis and augmentation strategy based on depth data that can be transferred to a real-world NLOS imaging system. Our preliminary experiments suggest that our method is able to generalize to real-world NLOS measurement to estimate physically-valid 3D human poses.