论文标题

本地群体距离的聚类:出版偏见或相关测量值? vii。一个距离框架到100 MPC

Clustering of Local Group distances: publication bias or correlated measurements? VII. A distance framework out to 100 Mpc

论文作者

de Grijs, Richard, Bono, Giuseppe

论文摘要

我们考虑了已发布的距离模量对Fornax和Coma Galaxy群集,重点是自1990年以来的时期。我们已经将距离模量的目录仔细匀浆到了本系列先前论文中建立的距离尺度上。我们评估了与特定示踪剂使用相关的系统差异,并根据Tully-Fisher关系以及球形群集和行星星云光度函数的应用而放弃的结果。我们建议相对于$Δ(M -M)_0^{\ rm Fornax -virgo} = 0.18 \ pm 0.28 $和$δ(m -m mag和$δ(m -m m)和$Δ(m -m)_0^{\ rm coma coma- coma- coma- coma- coma- coma- pm pm,我们得出的一组加权平均距离模块(距离)是簇距离的大多数代表性的,\ begin {eqnarray}(m-m)_0^{\ rm fornax}&=&=&31.41 \ 31.41 \ \ pm box 0.15 \ pm box \ mbox {mag}(mag} {mag}(d = 19.1^1.1^1.1^{mbober } \ nonumber &=&31.21 \ pm 0.28 \ mbox {mag}(d = 17.5^{+2.4} _ { - 2.2} \ mbox {mpc)}; \ nonumber \\(m-m)_0^{\ rm coma}&=&34.99 \ pm 0.38 \ mbox {mag}(d = 99.5^{+19.0} _ { - 15.9} &=&34.78 \ pm 0.27 \ mbox {mag}(d = 90.4^{+11.9} _ { - 10.6} \ mbox {mpc {mpc)},\ nonumber \ end \ end {eqnarray},每个群体的第一个群体是基于我们的直接模块的第一个距离的结果,而距离的结果是几个距离的结果。 簇。两个簇的绝对距离模量在不确定性中相互一致。相对距离模量的产量较短的距离$ \ sim $ 1 $σ$。基础绝对距离中的不确定性似乎已经引起了0.20 mag的系统不确定性。

We consider the published distance moduli to the Fornax and Coma galaxy clusters, with emphasis on the period since 1990. We have carefully homogenized our catalogs of distance moduli onto the distance scale established in the previous papers in this series. We assessed systematic differences associated with the use of specific tracers, and discarded results based on application of the Tully--Fisher relation and of globular cluster and planetary nebula luminosity functions. We recommend `best' weighted relative distance moduli for the Fornax and Coma clusters with respect to the Virgo cluster of $Δ(m-M)_0^{\rm Fornax - Virgo} = 0.18 \pm 0.28 $ mag and $Δ(m-M)_0^{\rm Coma - Virgo} = 3.75 \pm 0.23$ mag. The set of weighted mean distance moduli (distances) we derived as most representative of the clusters' distances is, \begin{eqnarray} (m-M)_0^{\rm Fornax} &=& 31.41 \pm 0.15 \mbox{ mag } (D = 19.1^{+1.4}_{-1.2} \mbox{ Mpc) and} \nonumber &=& 31.21 \pm 0.28 \mbox{ mag } (D = 17.5^{+2.4}_{-2.2} \mbox{ Mpc)}; \nonumber \\ (m-M)_0^{\rm Coma} &=& 34.99 \pm 0.38 \mbox{ mag } (D = 99.5^{+19.0}_{-15.9} \mbox{ Mpc) and} \nonumber &=& 34.78 \pm 0.27 \mbox{ mag } (D = 90.4^{+11.9}_{-10.6} \mbox{ Mpc)}, \nonumber \end{eqnarray} where the first value for each cluster is the result of our analysis of the direct distance moduli, while the second modulus is based on distance moduli relative to the Virgo cluster. The absolute and relative distance moduli for both clusters are mutually consistent within the uncertainties; the relative distance moduli yield shorter distances by $\sim$1$σ$. Lingering uncertainties in the underlying absolute distance scale appear to have given rise to a systematic uncertainty on the order of 0.20 mag.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源