论文标题
在Twitter流中增强网络威胁指标的深度学习方法
Deep Learning Approach for Enhanced Cyber Threat Indicators in Twitter Stream
论文作者
论文摘要
最近几天,通过社交媒体资源共享的网络安全文本数据的数量主要增加。对这些数据的准确分析可以有助于开发网络威胁情境意识框架,以实现网络威胁。这项工作提出了一种基于深度学习的方法进行推文数据分析的方法。为了将推文转换为数值表示,采用了各种文本表示。这些功能是进入深度学习体系结构,以进行最佳特征提取和分类。各种高参数调谐方法用于识别最佳文本表示方法以及最佳的网络参数和网络结构,以识别深度学习模型。为了进行比较分析,采用了具有经典机器学习算法的经典文本表示方法。从实验的详细分析中,我们发现,具有高级文本表示方法的深度学习体系结构比经典的文本表示和经典的机器学习算法更好。这样做的主要原因是,高级文本表示方法具有学习顺序属性的能力,这些属性存在于文本数据和深度学习体系结构之间,学习了最佳特征,并减少了功能大小。
In recent days, the amount of Cyber Security text data shared via social media resources mainly Twitter has increased. An accurate analysis of this data can help to develop cyber threat situational awareness framework for a cyber threat. This work proposes a deep learning based approach for tweet data analysis. To convert the tweets into numerical representations, various text representations are employed. These features are feed into deep learning architecture for optimal feature extraction as well as classification. Various hyperparameter tuning approaches are used for identifying optimal text representation method as well as optimal network parameters and network structures for deep learning models. For comparative analysis, the classical text representation method with classical machine learning algorithm is employed. From the detailed analysis of experiments, we found that the deep learning architecture with advanced text representation methods performed better than the classical text representation and classical machine learning algorithms. The primary reason for this is that the advanced text representation methods have the capability to learn sequential properties which exist among the textual data and deep learning architectures learns the optimal features along with decreasing the feature size.