论文标题
贝叶斯选求解器:最大后验估计值
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
论文作者
论文摘要
最近已经确定,可以将普通微分方程的数值解作为非线性贝叶斯推理问题,每当使用高斯滤波和平滑时,可以通过使用高斯滤波和平滑来求解,每当使用高斯 - 马尔科夫(Markov)先验。在本文中,考虑了$ν$ times的$ν$ times线性时间不变的高斯 - 马尔科夫先验。建立了高斯估计器的分类学,最大的后质估计值在层次结构的顶部,可以使用迭代的扩展卡尔曼更平滑。其余三个类称为明确,半幅图和隐式,它们与对应于矢量字段上的条件相对应的经典概念相似,在该概念下,过滤器更新会产生局部最大值a后验估计。后验估计值对应于与先验相关的繁殖希尔伯特空间中的最佳插值,在当前情况下,该空间与平滑度$ν+1 $的Sobolev空间相当。因此,使用Sobolev空间中分散数据近似和非线性分析的方法,显示出最大后验估计值以填充距离(最大步长)的多项式速率收敛到真实溶液,但受矢量场的轻度条件约为。与经典的收敛分析方法相比,开发的方法提供了一种新颖,更自然的研究这些估计量的收敛性。在数值示例中证明了方法和理论结果。
It has recently been established that the numerical solution of ordinary differential equations can be posed as a nonlinear Bayesian inference problem, which can be approximately solved via Gaussian filtering and smoothing, whenever a Gauss--Markov prior is used. In this paper the class of $ν$ times differentiable linear time invariant Gauss--Markov priors is considered. A taxonomy of Gaussian estimators is established, with the maximum a posteriori estimate at the top of the hierarchy, which can be computed with the iterated extended Kalman smoother. The remaining three classes are termed explicit, semi-implicit, and implicit, which are in similarity with the classical notions corresponding to conditions on the vector field, under which the filter update produces a local maximum a posteriori estimate. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness $ν+1$. Consequently, using methods from scattered data approximation and nonlinear analysis in Sobolev spaces, it is shown that the maximum a posteriori estimate converges to the true solution at a polynomial rate in the fill-distance (maximum step size) subject to mild conditions on the vector field. The methodology developed provides a novel and more natural approach to study the convergence of these estimators than classical methods of convergence analysis. The methods and theoretical results are demonstrated in numerical examples.