论文标题

贝叶斯选求解器:最大后验估计值

Bayesian ODE Solvers: The Maximum A Posteriori Estimate

论文作者

Tronarp, Filip, Sarkka, Simo, Hennig, Philipp

论文摘要

最近已经确定,可以将普通微分方程的数值解作为非线性贝叶斯推理问题,每当使用高斯滤波和平滑时,可以通过使用高斯滤波和平滑来求解,每当使用高斯 - 马尔科夫(Markov)先验。在本文中,考虑了$ν$ times的$ν$ times线性时间不变的高斯 - 马尔科夫先验。建立了高斯估计器的分类学,最大的后质估计值在层次结构的顶部,可以使用迭代的扩展卡尔曼更平滑。其余三个类称为明确,半幅图和隐式,它们与对应于矢量字段上的条件相对应的经典概念相似,在该概念下,过滤器更新会产生局部最大值a后验估计。后验估计值对应于与先验相关的繁殖希尔伯特空间中的最佳插值,在当前情况下,该空间与平滑度$ν+1 $的Sobolev空间相当。因此,使用Sobolev空间中分散数据近似和非线性分析的方法,显示出最大后验估计值以填充距离(最大步长)的多项式速率收敛到真实溶液,但受矢量场的轻度条件约为。与经典的收敛分析方法相比,开发的方法提供了一种新颖,更自然的研究这些估计量的收敛性。在数值示例中证明了方法和理论结果。

It has recently been established that the numerical solution of ordinary differential equations can be posed as a nonlinear Bayesian inference problem, which can be approximately solved via Gaussian filtering and smoothing, whenever a Gauss--Markov prior is used. In this paper the class of $ν$ times differentiable linear time invariant Gauss--Markov priors is considered. A taxonomy of Gaussian estimators is established, with the maximum a posteriori estimate at the top of the hierarchy, which can be computed with the iterated extended Kalman smoother. The remaining three classes are termed explicit, semi-implicit, and implicit, which are in similarity with the classical notions corresponding to conditions on the vector field, under which the filter update produces a local maximum a posteriori estimate. The maximum a posteriori estimate corresponds to an optimal interpolant in the reproducing Hilbert space associated with the prior, which in the present case is equivalent to a Sobolev space of smoothness $ν+1$. Consequently, using methods from scattered data approximation and nonlinear analysis in Sobolev spaces, it is shown that the maximum a posteriori estimate converges to the true solution at a polynomial rate in the fill-distance (maximum step size) subject to mild conditions on the vector field. The methodology developed provides a novel and more natural approach to study the convergence of these estimators than classical methods of convergence analysis. The methods and theoretical results are demonstrated in numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源