论文标题
关于Calkin代数的预测测量学的注释
A note on geodesics of projections in the Calkin algebra
论文作者
论文摘要
令$ {\ cal c}({\ cal h})= {\ cal b}({\ cal h}) / {\ cal k}({\ cal h})$是calkin algebra($ {$ {\ cal b}(\ cal b}(\ cal b}) $ {\ cal k}({\ cal h})$是紧凑型操作员的理想和$π:{\ cal b}({\ cal h})\ to {\ cal c}({\ cal c}({\ cal h})$ the suberient map),$ {\ p} _} $ {\ cal c}({\ cal H})$中的自助杂点投影。 $ {\ cal c}({\ cal h})$的投影$ p $可以将其提升为{\ cal b}中的投影$ p \ in {\ cal b}({\ cal H})$:$π(p)= p $。 We show that given $p,q \in {\cal P}_{{\cal C}({\cal H})}$, there exists a minimal geodesic of ${\cal P}_{{\cal C}({\cal H})}$ which joins $p$ and $q$ if and only there exist lifting projections $P$ and $Q$ such $ n(p-q \ pm 1)$都是有限维度,或者都是无限的维度。如果$ p+q- 1 $具有微不足道的Anhihilator,则最小的大地测量是独一无二的。这里的断言是最小的断言,意味着它比其他任何其他分段平滑曲线$γ(t)\ in {\ cal p} _ {{\ cal c}({\ cal c}({\ cal c}({\ cal h}} $ \ | \dotγ(t)\ | D T $。
Let ${\cal C}({\cal H})={\cal B}({\cal H}) / {\cal K}({\cal H})$ be the Calkin algebra (${\cal B}({\cal H})$ the algebra of bounded operators on the Hilbert space ${\cal H}$, ${\cal K}({\cal H})$ the ideal of compact operators and $π:{\cal B}({\cal H})\to {\cal C}({\cal H})$ the quotient map), and ${\cal P}_{{\cal C}({\cal H})}$ the differentiable manifold of selfadjoint projections in ${\cal C}({\cal H})$. A projection $p$ in ${\cal C}({\cal H})$ can be lifted to a projection $P\in{\cal B}({\cal H})$: $π(P)=p$. We show that given $p,q \in {\cal P}_{{\cal C}({\cal H})}$, there exists a minimal geodesic of ${\cal P}_{{\cal C}({\cal H})}$ which joins $p$ and $q$ if and only there exist lifting projections $P$ and $Q$ such that either both $N(P-Q\pm 1)$ are finite dimensional, or both infinite dimensional. The minimal geodesic is unique if $p+q- 1$ has trivial anhihilator. Here the assertion that a geodesic is minimal means that it is shorter than any other piecewise smooth curve $γ(t) \in {\cal P}_{{\cal C}({\cal H})}$, $t \in I$, joining the same endpoints, where the length of $γ$ is measured by $\int_I \|\dotγ(t)\| d t$.