论文标题
硅光子学中的电动声学和宽带非重生
Electrically-driven Acousto-optics and Broadband Non-reciprocity in Silicon Photonics
论文作者
论文摘要
基于光子和声子之间可调节的相互作用的新兴技术承诺,从高保真微波信号处理到非接收光学光学元件和量子状态控制的新功能。尽管已经在各种物理系统中研究了此类轻型耦合,但许多实现依赖于非标准的材料和制造方案,这些材料和制造方案都具有挑战性地与标准的集成光子电路共同实现。值得注意的是,尽管综合电容调制器取得了重大进展,但相关的声学调节剂概念在硅光子学中仍然相对尚未探索。在本文中,我们证明了使用电动表面声波(SAWS)在硅波导中的直接声学调制。通过与标准硅在绝缘子光子平台中的压电ALN中的协整看到的换能器,我们利用硅的强弹性弹性效应介导了线性的光耦合。通过光刻设计,制造了1-5 GHz范围内的声学相和单层振幅调制器,表现出与现有的电光技术相当的索引调制强度。将这种旅行波的声音相互作用扩展到CM尺度,我们在硅中创建了电动的非转录调节器。实现了> 100 GHz的非转录操作带宽,插入损失<0.6 dB。在这些结果的基础上,我们表明统一效率的非磁性调制是可靠的声音隔离器所必需的。声学调制器设计与CMOS制造和现有的硅光子设备技术兼容。这些结果代表了一种有希望的新方法,用于实施集成光子电路中的紧凑和可扩展的声音调节器,频率变速器以及非磁性光学隔离器和循环器。
Emerging technologies based on tailorable interactions between photons and phonons promise new capabilities ranging from high-fidelity microwave signal processing to non-reciprocal optics and quantum state control. While such light-sound couplings have been studied in a variety of physical systems, many implementations rely on non-standard materials and fabrication schemes that are challenging to co-implement with standard integrated photonic circuitry. Notably, despite significant advances in integrated electro-optic modulators, related acousto-optic modulator concepts have remained relatively unexplored in silicon photonics. In this article, we demonstrate direct acousto-optic modulation within silicon waveguides using electrically-driven surface acoustic waves (SAWs). By co-integrating SAW transducers in piezoelectric AlN with a standard silicon-on-insulator photonic platform, we harness silicon's strong elasto-optic effect to mediate linear light-sound coupling. Through lithographic design, acousto-optic phase and single-sideband amplitude modulators in the range of 1-5 GHz are fabricated, exhibiting index modulation strengths comparable to existing electro-optic technologies. Extending this traveling-wave, acousto-optic interaction to cm-scales, we create electrically-driven non-reciprocal modulators in silicon. Non-reciprocal operation bandwidths of >100 GHz and insertion losses <0.6 dB are achieved. Building on these results, we show that unity-efficiency non-reciprocal modulation, necessary for a robust acousto-optic isolator, is within reach. The acousto-optic modulator design is compatible with both CMOS fabrication and existing silicon photonic device technologies. These results represent a promising new approach to implement compact and scalable acousto-optic modulators, frequency-shifters, and non-magnetic optical isolators and circulators in integrated photonic circuits.