论文标题

加权网络的基于图案的光谱聚类

Motif-Based Spectral Clustering of Weighted Directed Networks

论文作者

Underwood, William George, Elliott, Andrew, Cucuringu, Mihai

论文摘要

聚类是网络分析的必不可少的技术,其应用在各种领域。尽管光谱聚类是一种流行而有效的方法,但它无法考虑高阶结构,并且在有向网络上的性能差。一种方法是使用基元邻接矩阵捕获和聚集高阶结构。但是,当前的配方未能考虑到边缘权重,因此当重量是研究网络的关键组成部分时,有些限制。 我们通过探索基于基序的加权光谱聚类方法来解决这些缺点。我们为加权网络上的主题邻接矩阵提供了新的和计算上有用的矩阵公式,该公式可用于在三个节点上为任何锚定或非锚定的基序构建有效算法。在一个非常稀疏的制度中,我们提出的方法可以处理一百万个节点和数千万边缘的图形。我们进一步使用框架来构建一种基于基准的方法,用于聚集双方网络。 我们提供了全面的实验结果,证明了(i)方法的可伸缩性,(ii)高阶聚类在合成示例上的优势,以及(iii)我们技术对各种现实世界数据集的有效性;并与文献中的几种技术进行比较。我们得出的结论是,基于图案的光谱聚类是分析有指示和双方加权网络的有价值的工具,这也是可扩展且易于实现的。

Clustering is an essential technique for network analysis, with applications in a diverse range of fields. Although spectral clustering is a popular and effective method, it fails to consider higher-order structure and can perform poorly on directed networks. One approach is to capture and cluster higher-order structures using motif adjacency matrices. However, current formulations fail to take edge weights into account, and thus are somewhat limited when weight is a key component of the network under study. We address these shortcomings by exploring motif-based weighted spectral clustering methods. We present new and computationally useful matrix formulae for motif adjacency matrices on weighted networks, which can be used to construct efficient algorithms for any anchored or non-anchored motif on three nodes. In a very sparse regime, our proposed method can handle graphs with a million nodes and tens of millions of edges. We further use our framework to construct a motif-based approach for clustering bipartite networks. We provide comprehensive experimental results, demonstrating (i) the scalability of our approach, (ii) advantages of higher-order clustering on synthetic examples, and (iii) the effectiveness of our techniques on a variety of real world data sets; and compare against several techniques from the literature. We conclude that motif-based spectral clustering is a valuable tool for analysis of directed and bipartite weighted networks, which is also scalable and easy to implement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源