论文标题

生成点网:3D生成,重建和分类的无序点集的深度基于能量的学习

Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and Classification

论文作者

Xie, Jianwen, Xu, Yifei, Zheng, Zilong, Zhu, Song-Chun, Wu, Ying Nian

论文摘要

我们以基于能量的模型的形式提出了一个无序点集的生成模型,例如点云,其中能量函数是通过输入 - permoution-pontramuntimant-prommuartimant不变的自下而上神经网络进行参数化的。能量函数学习每个点的坐标编码,然后将所有单个点特征汇总为整个点云的能量。我们称我们的模型为生成点网,因为它可以从歧视点网中得出。我们的模型可以通过基于MCMC的最大似然学习(及其变体)培训,而无需任何辅助网络(如gans和vaes)的帮助。与大多数依赖手工制作的距离指标的点云发电机不同,我们的模型不需要对点云生成的任何手工制作的距离度量,因为它通过根据能量函数定义的统计属性匹配观察到的示例来合成点云。此外,我们可以学习一个针对基于能量的模型的短期MCMC,作为用于点云重建和插值的流动发电机。学习的点云表示形式可用于点云分类。实验证明了所提出的点云生成模型的优势。

We propose a generative model of unordered point sets, such as point clouds, in the form of an energy-based model, where the energy function is parameterized by an input-permutation-invariant bottom-up neural network. The energy function learns a coordinate encoding of each point and then aggregates all individual point features into an energy for the whole point cloud. We call our model the Generative PointNet because it can be derived from the discriminative PointNet. Our model can be trained by MCMC-based maximum likelihood learning (as well as its variants), without the help of any assisting networks like those in GANs and VAEs. Unlike most point cloud generators that rely on hand-crafted distance metrics, our model does not require any hand-crafted distance metric for the point cloud generation, because it synthesizes point clouds by matching observed examples in terms of statistical properties defined by the energy function. Furthermore, we can learn a short-run MCMC toward the energy-based model as a flow-like generator for point cloud reconstruction and interpolation. The learned point cloud representation can be useful for point cloud classification. Experiments demonstrate the advantages of the proposed generative model of point clouds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源