论文标题

非线性系统的增量仿射抽象

Incremental Affine Abstraction of Nonlinear Systems

论文作者

Hassaan, Syed M., Khajenejad, Mohammad, Jensen, Spencer, Shen, Qiang, Yong, Sze Zheng

论文摘要

在本文中,我们提出了一种通过求解一系列线性程序的序列,用于在有限域中动态过度评估非线性系统的增量抽象方法,从而导致一系列仿生的上下超级平面,并随着工作区域的扩展。尽管可以使用单个线性程序离线解决仿射抽象问题,但现有方法遭受计算空间复杂性,该计算空间复杂性随状态维度呈指数增长。因此,逐步抽象的动机是降低高维系统的空间复杂性,但要产生潜在的抽象/过度应用。具体而言,我们从一个运行区域开始,该区域是状态空间的一个子区域,并计算两个在局部非线性函数括起来的仿射超平面。然后,通过逐步扩展操作区域,我们动态更新了两个仿射超平面,以便我们最终产生的超平面在整个域上保证过度陈列于非线性系统。最后,使用高维非线性系统的数值示例证明了所提出的方法的有效性。

In this paper, we propose an incremental abstraction method for dynamically over-approximating nonlinear systems in a bounded domain by solving a sequence of linear programs, resulting in a sequence of affine upper and lower hyperplanes with expanding operating regions. Although the affine abstraction problem can be solved offline using a single linear program, existing approaches suffer from a computation space complexity that grows exponentially with the state dimension. Hence, the motivation for incremental abstraction is to reduce the space complexity for high-dimensional systems, but at the cost of yielding potentially worse abstractions/overapproximations. Specifically, we start with an operating region that is a subregion of the state space and compute two affine hyperplanes that bracket the nonlinear function locally. Then, by incrementally expanding the operating region, we dynamically update the two affine hyperplanes such that we eventually yield hyperplanes that are guaranteed to over-approximate the nonlinear system over the entire domain. Finally, the effectiveness of the proposed approach is demonstrated using numerical examples of high-dimensional nonlinear systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源