论文标题

使用机器学习的公司分类

Company classification using machine learning

论文作者

Husmann, Sven, Shivarova, Antoniya, Steinert, Rick

论文摘要

计算能力和机器学习算法的最新进步导致了多种研究领域的大幅改善。尤其是在金融中,机器学习的应用使研究人员和从业人员都能获得对财务数据和研究良好领域(例如公司分类)的新见解。在我们的论文中,我们证明了无监督的机器学习算法可用于以经济有意义有效的方式可视化和分类公司数据。特别是,我们将数据驱动的维数减小和可视化工具T分布的随机邻居嵌入(T-SNE)与光谱聚类结合使用。然后,该领域的专家可以利用由此产生的公司群体进行经验分析和最佳决策。通过在投资组合优化框架内提供示例性的样本外研究,我们表明T-SNE和光谱聚类的应用可改善整体投资组合性能。因此,在数据分析和公司分类的背景下,我们将我们的方法介绍给金融界,作为一种有价值的技术。

The recent advancements in computational power and machine learning algorithms have led to vast improvements in manifold areas of research. Especially in finance, the application of machine learning enables both researchers and practitioners to gain new insights into financial data and well-studied areas such as company classification. In our paper, we demonstrate that unsupervised machine learning algorithms can be used to visualize and classify company data in an economically meaningful and effective way. In particular, we implement the data-driven dimension reduction and visualization tool t-distributed stochastic neighbor embedding (t-SNE) in combination with spectral clustering. The resulting company groups can then be utilized by experts in the field for empirical analysis and optimal decision making. By providing an exemplary out-of-sample study within a portfolio optimization framework, we show that the application of t-SNE and spectral clustering improves the overall portfolio performance. Therefore, we introduce our approach to the financial community as a valuable technique in the context of data analysis and company classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源