论文标题
从接近度诱导的均匀和交错的自旋轨道和交换耦合的石墨烯中的量子异常霍尔效应
Quantum Anomalous Hall Effects in Graphene from Proximity-Induced Uniform and Staggered Spin-Orbit and Exchange Coupling
论文作者
论文摘要
我们研究了具有破裂的时间反转对称性的接近度修饰石墨烯(或对称类材料)的有效模型。我们通过计算散装带隙和Chern编号来预测量子异常阶段的出现,以实现系统参数的基准组合。允许交换交换字段启用平面石墨烯中的量子异常霍尔效应,而Chern Number $ C = 1 $。我们明确显示了锯齿形和扶手椅纳米式的边缘状态,并探索其本地化行为。值得注意的是,交错的固有自旋轨道和均匀交换耦合的组合提供了拓扑保护(与时间反转系统不同)伪稳态状态,其自旋在相反的曲折边缘相反。从平面到平面上旋转磁化使系统变得琐碎,从而可以控制拓扑相变。我们还建议使用密度函数理论,一种材料平台 - iSing抗fiferromagnet mnpse $ _3 $ ----以实现交错的交换(伪传Zeeman)耦合。
We investigate an effective model of proximity modified graphene (or symmetrylike materials) with broken time-reversal symmetry. We predict the appearance of quantum anomalous Hall phases by computing bulk band gap and Chern numbers for benchmark combinations of system parameters. Allowing for staggered exchange field enables quantum anomalous Hall effect in flat graphene with Chern number $C=1$. We explicitly show edge states in zigzag and armchair nanoribbons and explore their localization behavior. Remarkably, the combination of staggered intrinsic spin-orbit and uniform exchange coupling gives topologically protected (unlike in time-reversal systems) pseudohelical states, whose spin is opposite in opposite zigzag edges. Rotating the magnetization from out of plane to in plane makes the system trivial, allowing to control topological phase transitions. We also propose, using density functional theory, a material platform---graphene on Ising antiferromagnet MnPSe$_3$---to realize staggered exchange (pseudospin Zeeman) coupling.