论文标题

量规场的仿射连接表示

Affine connection representation of gauge fields

论文作者

Man, Zhao-Hui

论文摘要

有两种方法可以统一重力场和仪表场。一个是将重力场表示为主束连接,另一个是表示量规场作为仿射连接。 PoincaréGauge理论和公制的仪表理论采用了第一种方法。本文采用了第二本。在这种方法中: (i)量规场和重力场都可以由仿射连接表示;它们可以通过统一的空间框架来描述。 (ii)相对于内部坐标空间和外部坐标空间的所有维度,时间可以视为总公制。壳可以视为梯度方向。量子理论可以被视为梯度方向分布的几何理论。因此,量规理论,引力理论和量子理论都反映了流形的内在几何特性。 (iii)耦合常数,手性不对称,PMN混合和CKM混合自发地作为仿射连接表示中的几何特性出现,因此不再需要将它们视为拉格朗日人的直接假设。 (iv)由仿射连接代表的量规场的统一理论可以避免质子在诸如su(5)等理论中腐烂成一片清单的问题。 (v)存在对夸克颜色限制的几何解释。 在仿射连接表示中,我们可以更好地解释上述物理属性,以代表载体连接的规范领域,这可能是朝着最终的物理理论迈出的必要步骤。

There are two ways to unify gravitational field and gauge field. One is to represent gravitational field as principal bundle connection, and the other is to represent gauge field as affine connection. Poincaré gauge theory and metric-affine gauge theory adopt the first approach. This paper adopts the second. In this approach: (i) Gauge field and gravitational field can both be represented by affine connection; they can be described by a unified spatial frame. (ii) Time can be regarded as the total metric with respect to all dimensions of internal coordinate space and external coordinate space. On-shell can be regarded as gradient direction. Quantum theory can be regarded as a geometric theory of distribution of gradient directions. Hence, gauge theory, gravitational theory, and quantum theory all reflect intrinsic geometric properties of manifold. (iii) Coupling constants, chiral asymmetry, PMNS mixing and CKM mixing arise spontaneously as geometric properties in affine connection representation, so they are not necessary to be regarded as direct postulates in the Lagrangian anymore. (iv) The unification theory of gauge fields that are represented by affine connection can avoid the problem that a proton decays into a lepton in theories such as SU(5). (v) There exists a geometric interpretation to the color confinement of quarks. In the affine connection representation, we can get better interpretations to the above physical properties, therefore, to represent gauge fields by affine connection is probably a necessary step towards the ultimate theory of physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源