论文标题
在核和脉冲光波领域中的超旧电子电子的谐振高能BREMSSTRAHLUNG
Resonant high-energy bremsstrahlung of ultrarelativistic electrons in the field of a nucleus and a pulsed light wave
论文作者
论文摘要
实际的理论研究研究了具有相当能量的超旧电子电子和绝对型激光波的共鸣的高能自发的谐音自发性。在激光场中的谐振条件下,中间虚拟电子转化为真实粒子。结果,完成的分析定义了极性发射角度表征了自发光子的频率。该研究得出了代表过程的谐振差分横截面的表达式,这些过程与初始电子的动量(对于通道A)以及最终电子(对于频道B)的动量(对于自发的光子B)与$ r $ r $ r $ r $ r $ r $ r $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,... $ r = 1,...此外,共振差横截面的分布是较高的共振数量($ r = 2,3,... $)的自发光子发射角度的函数,以最大可能的频率划定了与峰值最大值的峰值最大值的依赖性。总而言之,完成的工作表示共振差横截面获得了相当大的幅度。因此,对于频道A的第一个共振,共振差横截面达到了$ \ sim 10^{12} $幅度的顺序,并且对于通道B $ \ sim 10^5 $的第三个共鸣(以$αz^2 r_e^2 $的单位为单位)。最后,在脉冲激光辐射(SLAC,FAIR,XFEL,ELI,XCELS)方面具有专业化的众多科学设施可能会通过实验验证构造的模型计算。
The actual theoretical research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave. Under the resonant conditions within the laser field the intermediate virtual electron transforms into the real particle. As a result, the accomplished analysis defines that the polar emission angle characterizes the frequency of a spontaneous photon. The study derives the expressions for the resonant differential cross-sections of the represented processes that realize simultaneous registration of the frequency and radiation angle in correlation to the momentum of the initial electron (for the channel A) and of the final electron (for the channel B) of the spontaneous photon with absorption of $r$ wave photons ($r = 1, 2, 3,... $ - the number of a resonance). Additionally, the distribution of the resonant differential cross-section as a function of the angle of the spontaneous photon emission for the higher numbers of resonance ($r = 2, 3,... $) delineates a dependency with a sharp peak maximum that coordinates to the particle radiation at the most probable frequency. To summarize, the accomplished work represents that the resonant differential cross-section acquires considerable magnitude. Thus, for the first resonance of the channel A the resonant differential cross-section attains the $\sim 10^{12}$ order of a magnitude, and for the third resonance of the channel B $\sim 10^5$ order of a magnitude (in the units of $αZ^2 r_e^2$). Finally, numerous scientific facilities with specialization in pulsed laser radiation (SLAC, FAIR, XFEL, ELI, XCELS) may experimentally verify the constructed model calculations.