论文标题
莫特(Mott)过渡和高温跨界
Mott transition and high-temperature crossovers at half-filling
论文作者
论文摘要
在半填充哈伯德模型中以相互作用驱动的莫特过渡是一种一阶相变,可在温度交互平面$ t-u $中终止以关键点$(t_ \ mathrm {c},u_ \ mathrm {c})$。沿着$(T_ \ Mathrm {C},U_ \ Mathrm {C})$的一定范围扩展的线路发生了许多分频器。渐近地接近$(T_ \ Mathrm {C},U_ \ Mathrm {C})$,这些行聚合到所谓的Widom线中。 $(T_ \ Mathrm {C},U_ \ Mathrm {C})$的存在以及关联的跨界车的存在何时在$(T_ \ Mathrm {C}上方发生长波长度波动或远程顺序时,何时发生长波长度波动或远程订单时,U_ \ Mathrm {C})$。我们使用连续的量子蒙特卡洛方法作为动态平均场理论(DMFT)和细胞动态平均场理论(CDMFT)的杂质求解器研究了这个问题。我们对比了平方晶格的病例,即在莫特过渡附近占主导地位的抗铁磁波动,而三角形晶格则没有。在平方晶格的Widom线附近发现的弯曲点和最大值可以作为三角形晶格案例的代理。但是,在所有情况下,在所有情况下都可以观察到的唯一跨界是与Mott Gap开放有关的跨界。相同的物理学还控制了称为“量子widom线”的电阻率中的模拟交叉。
The interaction-driven Mott transition in the half-filled Hubbard model is a first-order phase transition that terminates at a critical point $(T_\mathrm{c},U_\mathrm{c})$ in the temperature-interaction plane $T-U$. A number of crossovers occur along lines that extend for some range above $(T_\mathrm{c},U_\mathrm{c})$. Asymptotically close to $(T_\mathrm{c},U_\mathrm{c})$, these lines coalesce into the so-called Widom line. The existence of $(T_\mathrm{c},U_\mathrm{c})$ and of the associated crossovers becomes unclear when long-wavelength fluctuations or long-range order occur above $(T_\mathrm{c},U_\mathrm{c})$. We study this problem using continuous-time quantum Monte Carlo methods as impurity solvers for both Dynamical Mean-Field Theory (DMFT) and Cellular Dynamical Mean-Field Theory (CDMFT). We contrast the cases of the square lattice, where antiferromagnetic fluctuations dominate in the vicinity of the Mott transition, and the triangular lattice where they do not. The inflexion points and maxima found near the Widom line for the square lattice can serve as proxy for the triangular lattice case. But the only crossover observable in all cases at sufficiently high temperature is that associated with the opening of the Mott gap. The same physics also controls an analog crossover in the resistivity called the "Quantum Widom line".