论文标题

尖峰灾难模型中的深神经网络

Deep Neural Network in Cusp Catastrophe Model

论文作者

Daw, Ranadeep, He, Zhuoqiong

论文摘要

灾难理论最初是提出研究的动态系统,这些动力系统表现出由于输入小变化而引起的行为突然变化。这些模型可以在非线性动态模型中突然跳跃背后产生合理的解释。在不同的灾难模型中,由于其相对简单的动态和丰富的应用领域,尖峰灾难模型吸引了最大的关注。由于响应的复杂行为,参数空间变为高度非凸,因此很难优化以找出生成参数。我们没有为这些生成参数求解,而是演示了如何训练机器学习模型来学习尖峰灾难模型的动态,而无需真正解决生成模型参数。模拟研究和对一些著名数据集的应用用于验证我们的方法。据我们所知,这是在CUSP灾难模型中应用基于神经网络的方法的第一篇论文。

Catastrophe theory was originally proposed to study dynamical systems that exhibit sudden shifts in behavior arising from small changes in input. These models can generate reasonable explanation behind abrupt jumps in nonlinear dynamic models. Among the different catastrophe models, the Cusp Catastrophe model attracted the most attention due to it's relatively simpler dynamics and rich domain of application. Due to the complex behavior of the response, the parameter space becomes highly non-convex and hence it becomes very hard to optimize to figure out the generating parameters. Instead of solving for these generating parameters, we demonstrated how a Machine learning model can be trained to learn the dynamics of the Cusp catastrophe models, without ever really solving for the generating model parameters. Simulation studies and application on a few famous datasets are used to validate our approach. To our knowledge, this is the first paper of such kind where a neural network based approach has been applied in Cusp Catastrophe model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源