论文标题

无基质方法进行地统计滤波

A matrix-free approach to geostatistical filtering

论文作者

Pereira, Mike, Desassis, Nicolas, Magneron, Cédric, Palmer, Nathan

论文摘要

在本文中,我们提出了一种新颖的方法来进行地理滤波,该方法在将此方法应用于复杂的空间数据集时遇到了两个挑战:对数据的非平稳性进行建模,同时仍然能够使用大型数据集。该方法基于高斯随机场的有限元近似值,该场表示为laplace-beltrami操作员的特征函数的扩展,定义为局部各向异性。然后,使用有限元方法对所得随机字段的数值近似进行利用,以通过无基质方法解决可伸缩性问题。最后,提出了两种应用这种方法的情况,即在模拟和真实的地震数据上。

In this paper, we present a novel approach to geostatistical filtering which tackles two challenges encountered when applying this method to complex spatial datasets: modeling the non-stationarity of the data while still being able to work with large datasets. The approach is based on a finite element approximation of Gaussian random fields expressed as an expansion of the eigenfunctions of a Laplace--Beltrami operator defined to account for local anisotropies. The numerical approximation of the resulting random fields using a finite element approach is then leveraged to solve the scalability issue through a matrix-free approach. Finally, two cases of application of this approach, on simulated and real seismic data are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源