论文标题

分子电子转移反应的连续参数化量子模拟

Continuously parametrized quantum simulation of molecular electron transfer reactions

论文作者

Schlawin, Frank, Gessner, Manuel, Buchleitner, Andreas, Schaetz, Tobias, Skourtis, Spiros S

论文摘要

分子电子转移反应的全面描述对于我们对生物能源和分子电子中基本现象的理解至关重要。然而,在冷凝期环境中的分子系统的实验研究面临困难,无法独立控制以高精度控制转移机制的参数。我们表明,被困的离子实验允许通过精确调谐(例如声子温度,电子 - 音纸相互作用和电子耦合)来繁殖并连续连接分子电荷转移的截然不同的态度。这样的设置不仅允许重现广泛使用的运输模型,例如Marcus理论。它还提供了对分子实验无法实现的转移制度的访问权限,同时控制和测量单个量子水平的相关可观察物。我们的数值模拟预测了一个非常规量子转移制度,其特征是从量子绝热 - 与谐振辅助转移的过渡,这是供体 - 受体 - 受体能量差距的函数,可以通过在低温下增加电子耦合来达到电子耦合。因此,基于离子的量子模拟有望增强我们对分子电子转移过程的微观理解,并可能有助于揭示合成器件的有效设计原理。

A comprehensive description of molecular electron transfer reactions is essential for our understanding of fundamental phenomena in bio-energetics and molecular electronics. Experimental studies of molecular systems in condensed-phase environments, however, face difficulties to independently control the parameters that govern the transfer mechanism with high precision. We show that trapped-ion experiments instead allow to reproduce and continuously connect vastly different regimes of molecular charge transfer through precise tuning of, e.g., phonon temperature, electron-phonon interactions, and electronic couplings. Such a setting allows not only to reproduce widely-used transport models, such as Marcus theory. It also provides access to transfer regimes that are unattainable for molecular experiments, while controlling and measuring the relevant observables on the level of individual quanta. Our numerical simulations predict an unconventional quantum transfer regime, featuring a transition from quantum adiabatic- to resonance-assisted transfer as a function of the donor-acceptor energy gap, that can be reached by increasing the electronic coupling at low temperatures. Trapped ion-based quantum simulations thus promise to enhance our microscopic understanding of molecular electron transfer processes, and may help to reveal efficient design principles for synthetic devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源