论文标题

从自由文本预测战略行为

Predicting Strategic Behavior from Free Text

论文作者

Ben-Porat, Omer, Hirsch, Sharon, Kuchy, Lital, Elad, Guy, Reichart, Roi, Tennenholtz, Moshe

论文摘要

消息传递与动作之间的联系既是Web应用程序,例如Web搜索和情感分析以及经济学。但是,尽管突出的在线应用程序利用自然(人类)语言的消息传递以预测非战略行动选择,但经济学文献着重于结构化的风格化消息与游戏中的战略决策与多代理遭遇之间的联系。本文旨在连接这两条研究,这是由于网络上广泛的在线文本交流而高度及时而重要的。特别是我们介绍了以下问题:自然语言以自然语言表达的自由文本可以为在经济环境中以游戏为模型的行动选择吗? 为了启动有关此问题的研究,我们根据他/她提供的自由文本介绍了个人动作预测的研究,同时又不知道要玩的游戏。我们通过通过众包将常识性人格属性归因于个人编写的自由文本,并采用the绕的学习来预测这些人以这些属性为单一游戏采取的行动,从而解决问题。我们的方法使我们能够培训一个可以对多个游戏采取的动作做出预测的单个分类器。在三个经过精心研究的游戏实验中,我们的算法与强大的替代方法相比进行了比较。在消融分析中,我们证明了我们的建模选择的重要性 - - 具有常识性人格属性和分类器的文本表示对我们模型的预测能力。

The connection between messaging and action is fundamental both to web applications, such as web search and sentiment analysis, and to economics. However, while prominent online applications exploit messaging in natural (human) language in order to predict non-strategic action selection, the economics literature focuses on the connection between structured stylized messaging to strategic decisions in games and multi-agent encounters. This paper aims to connect these two strands of research, which we consider highly timely and important due to the vast online textual communication on the web. Particularly, we introduce the following question: can free text expressed in natural language serve for the prediction of action selection in an economic context, modeled as a game? In order to initiate the research on this question, we introduce the study of an individual's action prediction in a one-shot game based on free text he/she provides, while being unaware of the game to be played. We approach the problem by attributing commonsensical personality attributes via crowd-sourcing to free texts written by individuals, and employing transductive learning to predict actions taken by these individuals in one-shot games based on these attributes. Our approach allows us to train a single classifier that can make predictions with respect to actions taken in multiple games. In experiments with three well-studied games, our algorithm compares favorably with strong alternative approaches. In ablation analysis, we demonstrate the importance of our modeling choices---the representation of the text with the commonsensical personality attributes and our classifier---to the predictive power of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源