论文标题
与$ c(x)$的C*-Algebra张量产品的比较半径
The radius of comparison of the tensor product of a C*-algebra with $C (X)$
论文作者
论文摘要
令$ x $为紧凑的公制空间,让$ a $为具有较大矩阵尺寸的Unital AH代数,让$ b $成为稳定的有限的Unital C*-Algebra。 然后,我们给出了$ c(x)\ otimes b $比较半径的下限 尺寸级比率满足$ \ operatatorName {drr}(a)= \ operatatorName {drr} \ left(c(x)\ otimes a \ right)$。我们还提供一类Unital AH代数$ A $,并带有$ \ operatorName {rc} \ left(c(x)\ otimes a \ right)= \ operatatorName {rc}(a)$。我们进一步给出一类稳定的有限$ \ MATHCAL {z} $ - 稳定 具有非零比较半径的Unital C*代数。
Let $X$ be a compact metric space, let $A$ be a unital AH algebra with large matrix sizes, and let $B$ be a stably finite unital C*-algebra. Then we give a lower bound for the radius of comparison of $C(X) \otimes B$ and prove that the dimension-rank ratio satisfies $\operatorname{drr} (A) = \operatorname{drr} \left(C(X)\otimes A\right)$. We also give a class of unital AH algebras $A$ with $\operatorname{rc} \left(C(X) \otimes A\right) = \operatorname{rc} (A)$. We further give a class of stably finite exact $\mathcal{Z}$-stable unital C*-algebras with nonzero radius of comparison.