论文标题
通过特定区域的常识来增强审查理解
Enhancing Review Comprehension with Domain-Specific Commonsense
论文作者
论文摘要
评论理解在提高在线服务和产品的质量以及常识知识方面起着越来越重要的作用,可以进一步增强审查理解。但是,现有的通用常识性知识库缺乏足够的覆盖范围和精确度,无法有意义地提高对特定领域的评论的理解。在本文中,我们介绍了Xsense,这是一种使用域特异性常识性知识库(Xsense KB)进行回顾理解的有效系统。我们表明,Xsense KB可以廉价地构造,并提出一种知识蒸馏方法,使我们能够使用Xsense KB和Bert来提高各种审查理解任务的性能。我们在三个审查理解任务上评估XSENSE:方面提取,方面情感分类和问题回答。我们发现,Xsense优于前两个任务的最新模型,并显着改善了基线BERT QA模型,这证明了将常分纳入审查理解管道的有用性。为了促进未来的研究和应用,我们公开发布了三个特定领域的知识库,并与本文一起回答基准的一个特定领域的问题。
Review comprehension has played an increasingly important role in improving the quality of online services and products and commonsense knowledge can further enhance review comprehension. However, existing general-purpose commonsense knowledge bases lack sufficient coverage and precision to meaningfully improve the comprehension of domain-specific reviews. In this paper, we introduce xSense, an effective system for review comprehension using domain-specific commonsense knowledge bases (xSense KBs). We show that xSense KBs can be constructed inexpensively and present a knowledge distillation method that enables us to use xSense KBs along with BERT to boost the performance of various review comprehension tasks. We evaluate xSense over three review comprehension tasks: aspect extraction, aspect sentiment classification, and question answering. We find that xSense outperforms the state-of-the-art models for the first two tasks and improves the baseline BERT QA model significantly, demonstrating the usefulness of incorporating commonsense into review comprehension pipelines. To facilitate future research and applications, we publicly release three domain-specific knowledge bases and a domain-specific question answering benchmark along with this paper.