论文标题
较弱监督分段的歧管驱动的注意图
Manifold-driven Attention Maps for Weakly Supervised Segmentation
论文作者
论文摘要
使用深度学习的细分显示了医学成像中有希望的方向,因为它有助于疾病的分析和诊断。然而,深层模型的主要缺点是它们需要大量像素级标签,这些标签艰辛而昂贵。为了减轻这个问题,弱监督的学习已成为有效的替代方案,它采用图像级标签,涂鸦,点或边界框作为监督。其中,图像级标签更容易获得。但是,由于这种类型的注释仅包含对象类别信息,因此此学习范式下的分割任务是一个具有挑战性的问题。为了解决这个问题,通常使用从训练有素的分类网络中得出的视觉明显区域。尽管他们成功地确定了有关分类任务的重要区域,但这些显着区域仅着眼于图像中最判别的领域,从而限制了它们在语义细分中的使用。在这项工作中,我们提出了一个基于多种注意力的网络,以增强视觉突出区域,从而提高了弱监督环境中的细分精度。我们的方法在推断过程中直接生成了较高的注意图,而无需额外的计算。我们使用皮肤病变图像的公共基准评估了方法在细分方面的好处。结果表明,我们的方法的表现优于最先进的Gradcam,就骰子得分而言,差距约为22%。
Segmentation using deep learning has shown promising directions in medical imaging as it aids in the analysis and diagnosis of diseases. Nevertheless, a main drawback of deep models is that they require a large amount of pixel-level labels, which are laborious and expensive to obtain. To mitigate this problem, weakly supervised learning has emerged as an efficient alternative, which employs image-level labels, scribbles, points, or bounding boxes as supervision. Among these, image-level labels are easier to obtain. However, since this type of annotation only contains object category information, the segmentation task under this learning paradigm is a challenging problem. To address this issue, visual salient regions derived from trained classification networks are typically used. Despite their success to identify important regions on classification tasks, these saliency regions only focus on the most discriminant areas of an image, limiting their use in semantic segmentation. In this work, we propose a manifold driven attention-based network to enhance visual salient regions, thereby improving segmentation accuracy in a weakly supervised setting. Our method generates superior attention maps directly during inference without the need of extra computations. We evaluate the benefits of our approach in the task of segmentation using a public benchmark on skin lesion images. Results demonstrate that our method outperforms the state-of-the-art GradCAM by a margin of ~22% in terms of Dice score.