论文标题
LUDA:带GPU的LSM钥匙值商店压缩
LUDA: Boost LSM Key Value Store Compactions with GPUs
论文作者
论文摘要
基于原木结构的建模(LSM)基于树的关键价值商店面临着充分利用基础存储设备的急剧性能改进的关键挑战,这使得LSM键值商店的压实操作成为CPU订立,并且慢速压实显着降低了关键价值商店的降低关键价值商店。为了解决这个问题,我们建议使用CUDA的LSM钥匙值存储Luda,该商店使用GPU加速LSM钥匙值存储的压实操作。如何有效地平行压实程序以及适应GPU体系结构挑战Luda的最佳性能合同。具体而言,Luda通过利用压实程序之间的数据独立性以及使用合作排序机制和明智的数据运动来克服这些挑战。评估结果在不同级别的CPU开销中运行,在不同级别的CPU开销中运行,LUDA提供的吞吐量和2倍数据处理速度高达2倍,并且比LevelDB和RockSDB获得了更稳定的第99%Lestencies。
Log-Structured-Merge (LSM) tree-based key value stores are facing critical challenges of fully leveraging the dramatic performance improvements of the underlying storage devices, which makes the compaction operations of LSM key value stores become CPU-bound, and slow compactions significantly degrade key value store performance. To address this issue, we propose LUDA, an LSM key value store with CUDA, which uses a GPU to accelerate compaction operations of LSM key value stores. How to efficiently parallelize compaction procedures as well as accommodate the optimal performance contract of the GPU architecture challenge LUDA. Specifically, LUDA overcomes these challenges by exploiting the data independence between compaction procedures and using cooperative sort mechanism and judicious data movements. Running on a commodity GPU under different levels of CPU overhead, evaluation results show that LUDA provides up to 2x higher throughput and 2x data processing speed, and achieves more stable 99th percentile latencies than LevelDB and RocksDB.