论文标题

随机图中的大型诱导匹配

Large induced matchings in random graphs

论文作者

Cooley, Oliver, Draganić, Nemanja, Kang, Mihyun, Sudakov, Benny

论文摘要

给定一个大图$ h $,二项式随机图$ g(n,p)$是否包含$ h $的副本,作为诱发子图,概率很高?这个经典问题已针对各种图表进行了广泛的研究,可以回到Erdős和Bollobás的$ G(N,P)$的独立性数量的研究,以及1976年的Matula。在本文中,我们证明了$ C/N \ le p $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c(订单的匹配约为$ 2 \ log_q(np)$,其中$ q = \ frac {1} {1-p} $。

Given a large graph $H$, does the binomial random graph $G(n,p)$ contain a copy of $H$ as an induced subgraph with high probability? This classical question has been studied extensively for various graphs $H$, going back to the study of the independence number of $G(n,p)$ by Erdős and Bollobás, and Matula in 1976. In this paper we prove an asymptotically best possible result for induced matchings by showing that if $C/n\le p \le 0.99$ for some large constant $C$, then $G(n,p)$ contains an induced matching of order approximately $2\log_q(np)$, where $q= \frac{1}{1-p}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源