论文标题
通过二元式规范在普通树上的痕量空间表征
Characterization of trace spaces on regular trees via dyadic norms
论文作者
论文摘要
在本文中,我们研究了普通根树上的Orlicz-Sobolev空间的痕迹。在对常规树边界的边界进行了二分解后,我们在一阶orlicz-sobolev空间的痕量空间上进行了表征,其年轻函数的形式为$ t^p \ log log^λ(e+t)$,基于基于二元分解的二元元素的积分平均值。
In this paper, we study the traces of Orlicz-Sobolev spaces on a regular rooted tree. After giving a dyadic decomposition of the boundary of the regular tree, we present a characterization on the trace spaces of those first order Orlicz-Sobolev spaces whose Young function is of the form $t^p\log^λ(e+t)$, based on integral averages on dyadic elements of the dyadic decomposition.