论文标题

通过双重和跨注意编码链接的实体

Entity Linking via Dual and Cross-Attention Encoders

论文作者

Agarwal, Oshin, Bikel, Daniel M.

论文摘要

实体链接有两个主要的研究领域:1)在不使用别名表的情况下生成候选实体,而2)为这两个提及和实体产生更多的上下文表示。最近,已经提出了一种解决前者作为双编码实体检索系统(Gillick等,2019)的解决方案,该系统在同一空间中学习了提及和实体表示形式,并通过在该领域中选择最近的实体来执行链接。在这项工作中,我们仅使用此检索系统来生成候选实体。然后,我们通过对目标提及和每个候选实体进行跨注意编码器来重新读取实体。尽管双重编码器方法迫使所有信息都包含在用于表示提及和实体的小型固定的矢量维度中,但交叉说明模型允许从每个<,上下文,上下文,候选实体> tuple中使用详细信息(读取:功能)。我们尝试使用Reranker中使用的功能,包括合并文档级上下文的不同方式。我们在ACTBP-2010数据集上实现了最先进的结果,精度为92.05%。此外,我们展示了在较大的CONLL-2003数据集中训练并在ACKBP-20110上进行评估时,回归模型如何概括。

Entity Linking has two main open areas of research: 1) generate candidate entities without using alias tables and 2) generate more contextual representations for both mentions and entities. Recently, a solution has been proposed for the former as a dual-encoder entity retrieval system (Gillick et al., 2019) that learns mention and entity representations in the same space, and performs linking by selecting the nearest entity to the mention in this space. In this work, we use this retrieval system solely for generating candidate entities. We then rerank the entities by using a cross-attention encoder over the target mention and each of the candidate entities. Whereas a dual encoder approach forces all information to be contained in the small, fixed set of vector dimensions used to represent mentions and entities, a crossattention model allows for the use of detailed information (read: features) from the entirety of each <mention, context, candidate entity> tuple. We experiment with features used in the reranker including different ways of incorporating document-level context. We achieve state-of-the-art results on TACKBP-2010 dataset, with 92.05% accuracy. Furthermore, we show how the rescoring model generalizes well when trained on the larger CoNLL-2003 dataset and evaluated on TACKBP-2010.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源