论文标题

通过多体系统学习学习

Learning about learning by many-body systems

论文作者

Zhong, Weishun, Gold, Jacob M., Marzen, Sarah, England, Jeremy L., Halpern, Nicole Yunger

论文摘要

从肥皂气泡到悬浮液再到聚合物,在驱动器中学习和记住驱动器中的模式,使它们远离平衡。该学习可能会用于计算,记忆和工程。到目前为止,已经使用热力学特性(例如工作吸收和应变)检测到多体学习。我们超越了针对平衡环境定义的这些宏观属性的进展:我们使用表示学习模型来量化统计机械学习,这是一种机器学习模型,其中信息通过瓶颈挤压。通过计算瓶颈的特性,我们测量了多体系统学习的四个方面:分类能力,记忆能力,歧视能力和新颖性检测。经典自旋玻璃的数值模拟说明了我们的技术。该工具包揭示了自组织,从而通过热力学措施避免检测:我们的工具包更可靠,更精确地检测和量化学习,同时为多体学习提供了统一的框架。

Diverse many-body systems, from soap bubbles to suspensions to polymers, learn and remember patterns in the drives that push them far from equilibrium. This learning may be leveraged for computation, memory, and engineering. Until now, many-body learning has been detected with thermodynamic properties, such as work absorption and strain. We progress beyond these macroscopic properties first defined for equilibrium contexts: We quantify statistical mechanical learning using representation learning, a machine-learning model in which information squeezes through a bottleneck. By calculating properties of the bottleneck, we measure four facets of many-body systems' learning: classification ability, memory capacity, discrimination ability, and novelty detection. Numerical simulations of a classical spin glass illustrate our technique. This toolkit exposes self-organization that eludes detection by thermodynamic measures: Our toolkit more reliably and more precisely detects and quantifies learning by matter while providing a unifying framework for many-body learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源